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1 Introduction

When a solid object is struck, scraped, or engages in other
external interactions, the forces at the contact point causes
deformations to propagate through the body, causing its
outer surfaces to vibrate and emit sound waves. Examples
of musical instruments utilizing solid objects like this are the
marimba, the xylophone, and bells.

The sounds made by objects like this are important for
interacting with our environment because they provide use-
ful information about the physical attributes of the object,
its environment, and the contact events, including the force
(or energy) of the impact, the material composition of the
object, the shape and size, the place of impact on the object,
and finally the location and environment of the object.

In order to create the sounds of objects like this in an
interactive digital environment, such as a video game or a
simulation, we need real-time synthesis, as we do not know
the stimulus of the (virtual) objects before they occur, and
sustained intimate user interaction like touching and scrap-
ing an object needs a continuously parametrizable sound.

A good physically motivated synthesis model for objects
like this is modal synthesis (Wawrzynek, 1989; Gaver, 1993;
Morrison & Adrien, 1993; Cook, 1996; Doel & Pai, 1996;
Doel, Kry, & Pai, 2001; O’Brien, Chen, & Gatchalian,
2002; Doel, Pai, Adam, Kortchmar, & Pichora-Fuller, 2002),
where a vibrating object is modeled by a bank of damped
harmonic oscillators which are excited by an external stim-
ulus. The frequencies and dampings of the oscillators are
determined by the geometry and material properties (such
as elasticity) of the object and the coupling gains are deter-
mined by the location of the force applied to the object.

The modal synthesis model is physically well motivated,
as the linear partial differential equation for a vibrating sys-
tem, with appropriate boundary conditions, has as solutions
a superposition of vibration modes. See Fig. 1 for an illus-
tration.

Modal synthesis can also be used to model other types of
physical systems which can be modeled by excitations act-
ing on resonances, such as car engines, rumbling sounds, or
virtual musical instruments. For musical instruments with
a harmonic spectrum modal synthesis can be used, but it
is computationally quite demanding because of the large
number of modes needed. Waveguide models (Smith, 1992;
Cook, 2003) are in most cases much more efficient for these
types of sounds. The sound made by a modal model can be
computed very efficiently with an O(N) algorithm (Gaver,
1993; Doel & Pai, 1998; Doel, 1998) for a model of N modes,
as described below.

∗This work was supported in part by grants from the Peter
Wall Institute and the Institute for Robotics and Intelligent Sys-
tems.

Figure 1: Modal synthesis of the sound made by hitting
a bar with a hammer. The hammer force is modeled by
a contact force model, and send to a bank of resonators,
which is the modal model of the bar. Each resonator has a
characteristic frequency, damping, and gain and the outputs
of the resonators are summed and rendered.

The remainder of this article is organized as follows. Sec-
tion 2 defines modal synthesis and explains the physical mo-
tivation behind it. An efficient synthesis algorithm is derived
formally and we show how to implement it. In Section 3 we
discuss the construction of excitation signals to the modal
models for a number of applications. Concluding remarks
are presented in Section 4. A set of Java classes implement-
ing these ideas is provided on the accompanying CD, and
discussed in detail in this text. An implementation in C is
also provided.

2 Modal Resonance Models

2.1 General Properties

We can formally describe a modal model M utilizing N
modes at K different locations (contact points) on an ob-
ject as M = {f ,d,A}, where f is a vector of length N
whose components are the modal frequencies in Hertz, d is
a vector of length N whose components are the (angular)
decay rates in Hertz, and A is an N × K matrix , whose
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elements ank are the gain coefficients for each mode.
The Java class ModalModel encapsulates a modal

model. It contains the public member variables

public double[] f;

public double[] d;

public double[][] a;

which define M. This class also contains the member vari-
ables

public double fscale;

public double dscale;

public double ascale;

which provide a convenient means to uniformly scale the
frequencies, dampings, and gains of an entire model. The
class constructor ModalModel(String fn) reads the modal
parameters from a text file in a self-explanatory format. By
convention a modes file has the extension .sy. Several exam-
ples of modal models are provided with the accompanying
code examples.

The impulse response y(t) of M at location k is given by

y(t) =

N∑
n=1

ank exp(−dnt) sin(2πfnt), (1)

for t ≥ 0 and is zero for t < 0, where y(t) denotes the audio
signal as a function of time. The impulse response represents
the sound the virtual object makes when struck with a unit
impulse at time t = 0 at location k. The decay rate dn of
each mode is an object property which is strongly influenced
by the material, which determines the internal dissipation
of energy during vibration. According to a simple mate-
rial model explained in (Wildes & Richards, 1988; Krotkov
& Klatzky, 1995), the dampings dn are just proportional
to the modal frequencies fn, i.e., dn = ρfn, with the pro-
portionality constant ρ determined by the internal friction
parameter. Small values of ρ produce models which are rel-
atively undamped, characteristic of metal objects, whereas
larger values produce highly damped models characteristic
of materials such as plastic and wood. In real objects this re-
lation between damping and frequency is only approximately
valid (Doel, 1998), but this simple model is capable of evok-
ing the illusion of materials reasonably well as was shown
in perception studies (Klatzky, Pai, & Krotkov, 2000). The
impulse response y as given in Equation 1 is characteristic
of physical systems that obey the linear wave equation for
solid bodies, which is of the form

(A− 1

c2

∂2

∂t2
)µ(x, t) = 0 (2)

on some domain, where µ is the deviation of the surface as
a function of time, and A is a (usually very complicated)
spatial differential operator. The solution of Equation 2, to-
gether with a radiation model which we do not discuss here,
in principle allows the calculation of the modal parameters
in Equation 1, however this is very complicated. In (Doel
& Pai, 1998) the calculation was performed for some sim-
ple shapes. Finite element methods were used in (O’Brien,
Cook, & Essl, 2001; O’Brien et al., 2002).

The provided modes file s100.sy contains the computed
modal data for an ideal string, with 100 modes and 20 con-
tact locations. Taking the string to lie on the interval [0 1],
the computed contact locations are at the K discrete points
p = (k + 1)/2K, where k = 0, . . . , K − 1. The demo De-
moBowedString uses this modes file to synthesize an ideal

string bowed by white noise. You can set the bow point with
the bottom slider whereas the upper slider sets the pitch (or
string tension). A linear model with a noise excitation over-
simplies the physics of a bowed string, which is non-linear
and quite complicated (Serafin, 2003). Nevertheless, the re-
sulting sound is quite convincing.

The sound model parameters for a given object can also
be obtained experimentally by recording the impulse re-
sponse of the object and fitting the model parameters to
the recorded sound. We can think of this as designing a
digital filter of a specific type with a given impulse response
(the recording). Various off-the-shelf tools are available to
display spectrograms and sonograms of sounds, and these
can be used to measure the modal parameters. For exam-
ple, in Fig. 2 we depict the spectrogram of a recording of

Figure 2: The spectrogram of a church bell. The x-axis is
time, frequency corresponds to the y-axis. The decibel level
is mapped to darkness.

a church bell (bell4.wav). An algorithm to automatically
extract a modal model from a recorded impulse response
at one location was given in Van den Doel’s thesis (Doel,
1998). A modified version of the algorithm was used to ex-
tract the modes of the bell which can be found in the file
bell4.sy. This algorithm is also capable of integrating data
from multiple contact points into a single modal model and
is described in (Pai et al., 2001). The corresponding demo
is DemoBellStrike. The lower slider in the UI dialog sets
the number of modes used in the synthesis, from 1− 50, the
upper slider sets the hardness (see Section 3.1) of the virtual
mallet used to strike the bell.

The Active Measurement Facility (ACME) at the Univer-
sity of British Columbia (Pai et al., 2001) has the capability
to automatically acquire sound measurements by moving a
sound effector around the surface of a test object by the
robot arm. At selected points on the surface, the sound ef-
fector hits the object with an impulsive force and records the
sound produced by the impact. The modes file calona0.sy
contains the modes extracted from measurements at ACME
on a glass bottle. The corresponding demo is DemoBottle-
Hit. The lower slider in the control panel sets the location of
the impact point on the bottle, mapped to the interval [0 1],
and the upper slider sets the hardness (see Section 3.1) of
the virtual mallet used to strike the bell.

Sometimes it is desirable to construct a modal model
by hand (and ear), for example using a modal model edi-
tor (Chaudhary, Freed, Khoury, & Wessel, 1998). An ex-
ample of a resonance model for engine sounds is given in
car1.sy, which is used in the DemoEngine demo, which
takes command line arguments pointing to the modal model
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and the excitation model. We will discuss this demo further
in Section 3.3.

2.2 Derivation of a Modal Synthesis Algorithm

We shall now derive the modal synthesis algorithm, show
how it can be implemented most efficiently, and we then
show that it is in fact a bank of reson filters (resonant band-
pass filters) operating on the interaction force. If we assume
a linear model, the response to any kind of input force is
determined completely by the impulse response. It follows
from Equation 1 that the sound produced by an impulsive
force of magnitude F at time s can be described by the
imaginary part of the complex wave form

y(t) =
∑

n

aneiΩn(t−s)H(t− s)F, (3)

where the sum is over the complex eigenfrequencies Ωn (the
imaginary part determines the damping of a mode). H(t) =
0 for t < 0 and H(t) = 1 for t ≥ 0. If we substitute F = 1,
s = 0, Ω = 2πfn − idn, assume t > s so H(t − s) = 1, we
recover Equation 1 from this.

A continuous stimulus force F (t) can be represented for-
mally as an infinite sum of infinitesimal impulses

F (t) =

∫ ∞

0

δ(t− s)F (s)ds,

where δ(t) is the Dirac delta distribution, assuming the force
is zero for negative times. Using the principle of linearity,
the output of the model driven by this force can be written
as a sum of infinitesimal contributions from each of these
impulses:

y(t) =

∫ ∞

0

ds
∑

n

aneiΩn(t−s)H(t− s)F (s).

Discretizing this equation in time, with sampling rate SR,
gives

y(m) =

m∑
l=0

∑
n

ane
i
Ωn
SR

(m−l)
F (l),

with y(m) = SRy(tm) and tm = m/SR. This convolution
equation can be rewritten as a recursion relation by defin-
ing the functions yn(m), one for each partial. The complex
signal is written as a sum of modal contributions yn

y(m) =
∑

n

yn(m).

For the partials yn(m) we have

yn(0) = anF (0)

and the recursion relation

yn(m) = e
i
Ωn
SR yn(m− 1) + anF (m) (4)

determines the audio signal Im(y). As |ei
Ωn
SR | < 1, the re-

cursion relation is always stable. Equation 4 requires 5 mul-
tiplications per sample point, which can be reduced to 3 as
we will now derive.

To simplify the notation, let us drop the subscripts n
which labels the modes, and write y(m) = u(m) + iv(m),
with u and v real. The recursion can now be written as

u(m) = cru(m− 1)− civ(m− 1) + aF (m)
v(m) = ciu(m− 1) + crv(m− 1),

(5)

with
cr = e−d/SR cos(ω/SR),

ci = e−d/SR sin(ω/SR),

d = Im(Ω),

and
ω = Re(Ω).

We can eliminate u from Equation 5 as

u(m) = v(m + 1)/ci − crv(m)/ci

and arrive at the second order recursion for the quantity of
interest, v, in the form

v(m) = 2R cos(θ)v(m−1)−R2v(m−2)+aR sin(θ)F (m−1),
(6)

R = e−d/SR ,

and
θ = ω/SR.

Equation 6 is precisely the equation for a re-
son filter (Steiglitz, 1996) with transfer function
H(z) = 1/(1 − 2R cos θz−1 + R2z−2), operating on
the input signal aR sin(θ)z−1F . Note that because of the
Nyquist theorem all modal frequencies must be less than
half the sampling rate, so both sin > 0 and cos > 0.

To synthesize the sound in real-time, we repeatedly com-
pute an audio buffer of length T . The synthesis algorithm
fetches the values of the coefficient arrays as well as the ex-
ternal force F for the time interval T . Equation 6 is then
used to sequentially add contributions of the modes vn until
all modes have been added or until a certain deadline has
been passed. Note that this can’t be done in-place and re-
quires accumulating intermediate results in separate buffers.
If the modes are sorted in a decreasing order of importance,
this allows for a graceful degradation in the quality of the
synthesized sound, when the time available for audio syn-
thesis is not constant.

2.3 Implementation of Real-time Algorithm

A number of Java classes are provided which implement au-
dio synthesis based on the algorithm presented mathemati-
cally in Section 2.2.

The AudioForce interface provides a single method
which fills a given buffer with samples of the output pro-
duced by the object implementing it:

public interface AudioForce {

public void getForce(double [] output, int nsamples);

}

Stimulus forces will be represented by objects implementing
AudioForce, but vibrating objects also implement this in-
terface, in which case they can send their output (obtained
through getForce()) directly to the audio hardware; they
apply their “audio force” to the air. Objects can also ex-
cite each other, the output of one becoming the input of the
other. This “patch-based” design has been used for a long
time in computer music (Mathews, 1969).

An object which produces sound is represented by the
abstract base class SonicObject:

public abstract class SonicObject

extends Thread implements AudioForce
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A SonicObject is capable of rendering itself to the audio
hardware in real-time by creating a thread using the start()
method which it inherits from its superclass Thread, which
will call the run() method. Its run() method,

public void run() {

float [] y = new float[bufferSize];

RTPlay pb = new RTPlay(bufferSizeJavaSound,srate,16,1,true);

while(true) {

this.getForce(y,bufferSize);

// Unimportant code omitted ...

pb.write(y);

}

}

obtains the output of the SonicObject using its own Au-
dioForce interface which classes derived from it must imple-
ment, and renders the result using the utility class RTPlay
which we wrote to provide a convenient interface to the stan-
dard Java audio API (JavaSound, which is part of Java 2)
through its write() method which places a buffer on the
playback queue and blocks if the queue is full. This design
is illustrated in Fig. 3.

Figure 3: The model for the excitation implements the Au-
dioForce interface. It sends audio buffers to the modal
model, which derives from the abstract class SonicObject,
which also implements AudioForce.

The Java class ModalSonicObject derives from Son-
icObject and implements the modal synthesis algorithm
from the previous section. It contains a reference to a
ModalModel, and a reference to an object audioForce
which implements the AudioForce interface method and
which encapsulates the input to the modal resonators. We
call it “audioForce” to stress its interpretation as a rapidly
fluctuating physical contact force on a material object.

ModalSonicObject implements its own AudioForce
interface with:

public void getForce(float [] output, int nsamples) {

audioForce.getForce(scratchBuf, nsamples);

computeSoundBuffer(output, scratchBuf, nsamples);

}

Its core method is computeSoundBuffer():

private void computeSoundBuffer(float[] output,

float[] force, int nsamples) {

for(int k=0;k<nsamples;k++) {

output[k] = 0;

}

int nf = modalModel.nfUsed;

for(int i=0;i<nf;i++) {

float tmp_twoRCosTheta = twoRCosTheta[i];

float tmp_R2 = R2[i];

float tmp_a = ampR[i];

float tmp_yt_1 = yt_1[i];

float tmp_yt_2 = yt_2[i];

for(int k=0;k<nsamples;k++) {

float ynew = tmp_twoRCosTheta * tmp_yt_1 -

tmp_R2 * tmp_yt_2 + tmp_a * force[k];

tmp_yt_2 = tmp_yt_1;

tmp_yt_1 = ynew;

output[k] += ynew;

}

yt_1[i] = tmp_yt_1;

yt_2[i] = tmp_yt_2;

}

}

The bank of nf reson filters has filter coefficients
twoRCosTheta and R2, which correspond to the vari-
ables occurring in Equation 6, and gains ampR. In the outer
for loop the filter coefficients are stored in temporary
variables to avoid array access in the inner loop. The inner
for loop adds the contribution of reson i to the output,
using the input buffer force. The member variables yt 1
and yt 2 remember the last two outputs from one buffer to
the next. (Note that we have ignored the one sample delay
in the force occurring in Equation 6, as it has no audible
effect as long as we don’t create any feedback loops using
this filter.) Note that the factor R sin(θ), which multiplies
the input force in Equation 1, has been absorbed in the
rescaled gains ampR.

There are two types of buffer sizes that concern us
here. The first is the buffer size bufferSize used in
calls to computeSoundBuffer(), which has an effect on
the latency. It should be set to a low value. How-
ever, a low value will introduce more overhead in calls to
computeSoundBuffer(). The demo class DemoModal-
Benchmark can be used to monitor the performance of the
algorithm by varying various parameters like bufferSize. It
times computeSoundBuffer() and then computes how many
modes could be synthesized maximally in real-time on the
machine. On a 450Mhz Pentium III one can synthesize 800
modes at a sampling rate of 22050Hz, for a buffer size of
128. If we set bufferSize to 1 (which will give the lowest
latency but the highest overhead) we can do only 200 modes.

In the C sample code directory we also provide a similar
benchmark implemented in C. For a buffer size of 128 it was
found that we could synthesize 1000 modes, making the C
code about 25% more efficient.

The second buffer size is bufferSizeJavaSound which
should be set to the smallest possible value to obtain the
lowest possible latency. The current JavaSound implemen-
tations require this buffer size to be rather enormous on most
platforms, with very large latencies, but this may improve
in the future.

Real-time interaction with a running SonicObject is
achieved by changing the modal model parameters and/or
the contact location. The modal parameters can be accessed
directly. Once the SonicObject is running, changing the
modal parameters has no effect until computeFilter() is
called, which then computes the filter coefficients occurring
in the synthesis loop. There is a potential race condition
here, as computeSoundBuffer() may be accessing these vari-
ables in the synthesis thread whereas a control thread is
changing them by calling computeFilter(). We have not
encountered any such problems in practice, and therefore
have not bothered writing the appropriate synchronized ac-
cessors.

The manner in which the location on the object is set
is somewhat involved. The modal model M contains gains
on a discrete set of location points. These location points
will usually correspond to geometric locations on some two-
dimensional contact surface. In order to allow for interpola-
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tion in between the data points we specify the location by
providing three discrete location points p1 p2 p3, which in-
dex the gain arrays. We then draw an imaginary triangle
(see Fig. 4) between the physical geometrical points on our

Figure 4: Interpolation of gain vectors which are defined at
the corners of the triangle. The gain vector associated with
point p inside the triangle is the linear combination with the
three barycentric coordinates bi as weights.

actual object (of which the audio objects have no knowledge)
and provide three barycentric coordinates b1 b2 b3 to spec-
ify the position within this triangle. The gain coefficients
are then appropriately averaged over the three discrete data
points. For one-dimensional objects, such as bars or strings,
we an simply use two significant discrete points p1 p2 and
as long as b3 = 0 the third point is irrelevant.

3 Audio Force Models

In order to create sounds with a modal model we need good
interaction force models to provide an input to the real-time
algorithm described in Section 2.3. The SonicObject con-
tains a single AudioForce object for the input excitation
force, though it could easily be extended to contain many
which operate on different locations. In this section we con-
sider four types of interaction models:

• Impact forces, used for collision sounds.

• Continuous contact forces for sliding and rolling.

• Combustion engine forces.

• Live data streams.

3.1 Impact Forces

When two solid bodies collide, large forces are applied for a
short period of time. The precise details of the contact force
will depend on the shape of the contact areas as well as on
the elastic properties of the involved materials. For example,
a rubber ball colliding with a concrete floor will experience
a contact force which will increase faster than linearly with
the compression of the ball, because the contact area also
increases during the collision. A generic model of contact
forces based on the Hertz model and the radii of curvatures
of the surfaces in contact was considered in (Johnson, 1985).
A Hertzian model was also used to create a detailed model
of the interaction forces between the mallet and the bars of
a xylophone (Chaigne & Doutaut, 1997).

To create a simple model of a collision force to drive the
audio synthesis, we assume that the two most important
distinguishing characteristics of an impact on an object is
the energy transfer in the strike and the “hardness” of the
contact. A psychophysical study of perceived mallet hard-
ness (Fried, 1990) of xylophones showed that this is indeed a
very perceptible parameter of an acoustic event. The hard-
ness translates directly in the duration of the force, and the
energy transfer translates directly in the magnitude of the
force profile.

We have experimented with a number of force profiles and
found that the exact details of the shape are relatively unim-
portant. A very simple phenomenological model of a finite
duration impact force can be constructed from a single pe-
riod of a cosine function. The model which we implemented
in a class BangForce approximates the contact force by a
function of the form

F (t) = Fmax(1− cos(
2πt

T
)) (7)

for 0 ≤ t ≤ T , with T the total duration of the contact.
This function has the qualitative correct form for a contact
force. The force increases slowly in the beginning, represent-
ing a gradual increase in contact area, and then rises rapidly,
representing the elastic compression of the materials. The
sounds of soft contacts (with large T ) are recognizable as
such, which shows that this model can produce this percep-
tion.

In order to hit a running SonicObject with a Bang-
Force you call hit() on the BangForce and the next time
the SonicObject calls getForce(), a strike profile is re-
turned. Typically, a duration of about 50ms will be per-
ceived as a very soft “thud”, and anything with a longer
duration is too smeared out in time to be audible.

More complex interactions during contact may have an
important effect in some cases. For example, the ham-
mers in a piano are covered with felt, so during the con-
tact between the hammer and the string they damp the
higher modes of vibration. How this actually occurs is quite
complicated (Hall, 1986, 1987a, 1987b; Stulov, 1995) and
potentially important, especially for high quality musical
instrument modeling. As another example, experimental
data (Stoianovici & Hurmuzlu, 1996) shows that there are se-
quences of very fast contact separations and collisions during
hard impacts. These micro collisions are caused by modal
vibrations of the objects involved, and can be simulated by
a short burst of impulse trains at the dominant modal fre-
quencies (Doel et al., 2001).

The DemoBellStrike class contains a demonstration of
the impact forces. It tolls a bell with a BangForce whose
duration can be set with a slider. Of course, if you don’t like
bells, any modal object can be substituted for the bell. A
second slider allows you to set the number of modes used, to
get a feeling for the degradation in quality when using fewer
modes. Its main() method contains the lines

sob1 = new SonicObject(new ModalModel(args[0]),

srate,bufferSize,bufferSizeJavaSound);

af1 = new BangForce(srate);

sob1.setAudioForce(af1);

sob1.start();

new HelperThread().start();

new DemoBellStrike (new java.awt.Frame (), true).show ();

which creates a SonicObject loaded from a modes file, as-
signs a BangForce to it and launches a control thread which
hits the bell:
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while(true) {

sleep(t_control);

af1.hit();

}

When you move the upper slider, the mallet hardness is set
by the user interface thread by

af1.setDuration(x);

where x is set by a slider.
The same bell model is also implemented in C, without a

user interface, using the PABLIO audio library for rendering.

3.2 Continuous Contact Forces

An important ingredient in synthesizing realistic scraping
and rolling sounds is a surface interaction model. A lot of re-
search has been conducted on models of contact interactions
between solids (Suresh Goyal, 1994a, 1994b; Løtstedt, 1984;
Keller, 1986; Baraff, 1992a, 1992b), but they usually focus
on predicting forces at a coarser time scale than needed for
our purposes, though not all (Ullrich & Pai, 1998). Never-
theless a rigid body simulator is able to provide information
about the contact force magnitudes and the friction forces at
the contact areas which may be used as inputs to a contact
force model.

This model should be able to generate contact forces at
the audio sampling rate for a specific type of contact given
the contact force at the simulation rate (usually orders of
magnitude slower than the audio rate) and the sliding speed.
The roughness profile of both surfaces will determine the
effective force stimulus to the object and therefore have an
important effect on the sound.

A solution we found to be satisfactory is to use a looping
digital sample with pitch shifting and volume control to ad-
just the speed and force of the contact. The physical picture
behind this contact model is that the sample encodes the
shape of the surface and the object scraping it is following
this surface profile exactly, like the needle in a phonograph.
Note that aliasing will occur for large values of the looping
speed which we find to make a positive contribution to the
effect in many cases, creating a richer variation with speed.
With a small set of short samples representing a variety of
textures a great variety of contact surface profiles can be
imposed upon the vibration models. Surface profiles were
created by simply scraping a real object with a contact mi-
crophone.

Another solution is to directly synthesize the contact force
from a stochastic noise model, which is quite involved and
will not be described here, see (Doel et al., 2001).

The Java class LoopForce represents a looping audio
sample with controllable looping speed and volume. Its con-
structor reads an audio file and calls to getForce() return
buffers obtained by looping through the sample buffer at the
current speed. The method getNextSample() implements
pitch shifting by linear sample interpolation. Experiments
with a more accurate quadratic sample interpolation algo-
rithm did not result in an audible improvement.

The demo class DemoMouseScrape allows you to
scrape a modal model with the mouse. It samples the
mouse position at a fixed sampling rate (say 50Hz) and uses
a lowpass differentiating filter to obtain the mouse velocity,
which is used to set the looping speed of the excitation.

3.3 Engine Forces

Engine sounds are very difficult to achieve in computer
games, as they are essentially continuous sounds which need

Figure 5: A hand-constructed looping wav file represents the
four strokes of a simple engine model. The rest of the car
including muffler is modeled as a lumped resonance model.

real-time control. Racing games are very popular and a
properly modeled car sound that responds in a realistic way
to input parameters would greatly enhance the audio in such
games.

It is not obvious that combustion engines can be mod-
eled with our techniques, as the sources of sound are ex-
plosions and very complicated gaseous phenomena. Rather
surprisingly, we found that reasonably convincing sounding
interactive models can be made by driving some resonance
object (a lumped model of everything that is vibrating) with
a rather simple-minded model of a combustion engine.

The first model we created is a 4-stroke engine. The driv-
ing force is obtained by constructing a looping audio sam-
ple divided into four regions which represent the 4 stages of
the engine. The sample driving the resonances as depicted
in Fig. 5 (car1.wav) contains an intake stroke, a compres-
sion stroke (silence), a combustion stroke, and an exhaust
stroke. The intake stroke was modeled as white noise en-
veloped with a bell curve. The exhaust stroke is modeled
as white noise, rapidly decaying in time, inspired by a high
pressure gas mixture being released when the valve opens.
The combustion stroke consists of an enveloped burst of 1/f
noise. It was found, after trying various 1/fα noises, that
this gives the most realistic sound. The reason is perhaps
that the combustion takes place inside the cylinder, so the
shock wave is transmitted to the mass of metal of the engine
block, which acts as a low pass filter.

The sample is looped at adjustable rate, correspond-
ing to the running speed of the engine. For added re-
alism the engine is allowed to “misfire” once in a while,
which we implement by skipping a section in the looped
sample. The Java class CombustionEngineForce is a
subclass of LoopForce, and has the additional method
setBeatupness(double prob) which sets the probability
per call to getForce() that the engine misfires.

This simple driving force model can generate a variety
of engine sounds by coupling it to various vibration mod-
els. Models with relatively high frequency resonances with
high damping give a “lawn mower” effect, whereas a low
frequency object gives a motorcycle sound.

A slightly different sound is produced by adding a back-
ground pitched sound to the sample at all four stages. This
simulates the sound of the fan, and perhaps other rotating
parts. For the pitched sound, a short noisy note played on
a Persian ney (a type of flute) was used, which is very satis-
factory. The audio file is car2.wav.

Yet another engine sound was obtained by creating a four
cylinder version. We assume the four cylinders fire 900 out
of phase and simply add the samples from the one cylinder
engine four times, with a relative phase shift of 900. If we just
use this driving force as-is, the result is not very good. The
reason is probably that in a real engine the four cylinders
are attached to the intake manifold at different locations and
therefore sound different. To incorporate this we adjust the
volumes of the four one-cylinder samples individually and
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when they are set all differently the resulting sound is much
better. The audio file is car3.wav.

The demo class DemoEngine creates a SonicObject off
a modes file, car1.sy for example, and applies a Combus-
tionEngineForce to it which is loaded from an audio file.
The top slider sets the speed and the bottom slider sets the
“beatupness”. We noticed that the result is strongly depen-
dent on the type of audio speakers used for playback, so you
may want to tune the model parameters to your audio setup.

In a real game application one would certainly spend a lot
more time on the actual modeling of the car engine than we
have done here. But our simple models show that a reason-
able result can already be obtained using extremely simple
models. To create richer engine sounds, different cylinders
may be coupled to different exhaust manifolds or muffler
pipes.

3.4 Live Data Streams

An interesting interface to this type of synthesis is a sensor
that measures real interaction forces. This can be demon-
strated with a contact microphone. When touching and
scraping real objects the audio signal can be sent to a syn-
thesis process, where this audio signal is then interpreted as
a force to whatever vibration model is currently loaded. We
can then scrape some interface object and transfer the mea-
sured signal to the audio synthesis to create the impression
of touching a virtual object. Another type of application is
to use the output of an electrical guitar as the driving force
for some virtual guitar body.

The Java class MikeAudioForce obtains its output
“force” buffer from the audio input of the sound-card:

protected RTAudioIn pai;

public void getForce(double [] output, int nsamples) {

pai.read(output,nsamples);

}

}

It makes use of the utility class RTAudioIn which provides
a convenient access to the audio input through JavaSound.
The class DemoMikeIn loads a ModalSonicObject from
a given modes file and attaches a MikeAudioForce to it.
It works well when using a contact mike for scraping various
surfaces. You can also plug the output of your electrical
guitar in, and have a modal guitar effects box.

4 Conclusions

We have given a theoretical and practical introduction to
modal synthesis, which we believe to be very useful for the
real-time synthesis of a variety of sounds. After discussing
the physics leading to the model, we derived an efficient
algorithm, which turns out to be a familiar bank of reson fil-
ters. A Java class ModalSonicObject implements a modal
model which can render itself. It contains an object which
implements the AudioForce interface, which provides it
with its input.

A SonicObject must implement its own AudioForce
interface which allows one SonicObject to act as the input
to another, creating in effect a filter graph.

Force models to excite the modal models were discussed
and examples were given of impact forces, scraping forces,
combustion engine forces, and live data streams.

The efficiency of the synthesis algorithm was measured
with the provided class DemoModalBenchmark and we
found that on a 450Mhz Pentium III one can synthesize

about 800 modes at a sampling rate of 22050Hz using Java,
whereas C is about 25% more efficient.

The Java code examples presented here for tutorial pur-
poses are, with slight modifications for presentational pur-
poses, part of JASS, which is a unit generator based au-
dio synthesis programming environment written mainly in
Java (Doel & Pai, 2001), but which also includes platform
specific code for low latency audio on Windows, LINUX, and
Macintosh OS X (CoreAudio). The JASS development envi-
ronment is available for non-commercial use from the JASS
website www.cs.ubc.ca~/kvdoel/jass (Doel, 2003), where
you can also try out several interactive audio synthesis ap-
plets which run in all modern web browsers.
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