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Abstract

We construct a model of tuning a single piano string taking into account
the friction points of the string as well as the twisting of the pin. The pin
angle is controlled by a tuning lever which is moved to change the angle of the
pin. This pulls the string which then moves and it also introduces a torsoidal
deformation of the pin (“twist”). So if the lever is released the twist will unwind
and potentially the pitch can shift. In addition the application of a “test blow”
(playing the note very loud) may cause the string to shift at the friction point,
causing another shift in pitch. The goal is to arrive at a desired pitch which is
stable under test blows. Numerical simulation of the model is performed from
which we derive stable tuning techniques which depend on the details of the
friction and torsion parameters of the piano.

1 Introduction

With the popularization of the piano around the turn of the previous century a new
profession appeared: the professional piano tuner. Stringed instruments have been
used for millennia and have always required frequent tuning, which was one of the
tasks of the player. The large tensions and large number of strings of the piano made
this task sufficiently difficult that nowadays pianos are tuned by professionals.

Deciding on the pitch of each note of the piano is non-trivial due to inharmonicity
which causes the harmonics to deviate from the natural overtone series [3]. Many
schemes for tuning are used and often passionately defended, but in this article we
will not be concerned with this issue and consider just the task of tuning a specific
piano string to a specific pitch.

This task is accomplished by turning the pin with a tuning lever (usually called
“hammer”). The pin is a cylinder which is held in place in a piece of wood called the
pin block. The string is wound around the pin and by turning it the string length
can be changed. The sounding part of the string is not directly attached to the pin
but passes over several pressure points where friction is generated. These friction
points as well as the rotational deformation of the pin due to the torque exerted by
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the tuner cause the relation between pitch and lever to be rather complicated. In
particular, due to friction, the string can potentially shift after tuning if tensions are
not properly equalized. The difficulty is to arrive at the correct pitch in a stable
manner, meaning the pitch will stay there during playing. A plethora of “hammer
techniques” are in use by professional piano tuners, each advocating superiority in
stability. See for example [1].

In this article we will create a model of the tuning process taking into account the
most important factors governing the process. It is shown that details specific to a
particular piano require different strategies to arrive at a stable tuning.

2 The pin model

The tuning pin is modeled as a cylinder of radius rp. One side of the pin resides in the
pin block, and the string is attached somewhere on the part that sticks out. Clearly
if the pin is rotated by an angle θ (in radians), the string is shortened or lengthened
(depending on how the string is wound) by a factor rpθ. Due to the non zero thickness
of the string rp should be taken to be the radius of the pin itselff plus half the radius
of the string. In this paper we shall assume an upright piano configuration where
the string is wound on the pin so that when the pin is turned counter clockwise (the
positive direction in our convention) the string unwinds and the pitch goes down.

Twisting the pin is a complicated process as the segment inside the pin block can
have a complicated friction torque distribution. We simplify this by assuming the
pin is effectively held in place at a distance Lp from the string attachment and we
compute the twisting based on this model.

When the pin is twisted a torque is exerted on the pin block and if this exceeds a
threshold, the pin turns. We shall assume a Coulomb model for the frictional process
which means that the maximum torque τB exerted on the block is limited to

|τB| < τmax. (1)

The parameter τmax is not very intuitive and we shall parametrize it in terms of the
“pin tightness” coefficient σp:

|τmax| = σprpF0 (2)

where F0 is the “usual” string tension (in Newtons). During tuning it changes only a
little bit from F0 so we consider it constant. Clearly we must have σp > 1 or the pin
would turn by itself.

The state of the pin is described by two angles θH (the angle at the string attach-
ment) and θB (the angle at the effective base). We shall denote the twist angle by
ψ = θH − θB. The torque τB is now given by

|τB| =
Jµ

Lp

ψ (3)
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with µ the shear modulus (force/area) of the pin material and J = πr4p/2. The shear
modulus of steel is µ = 80GN/m2, but our approximation of the pin block contact
and the fact that additional twist could be caused by wood deformation makes this
an uncertain parameter. Because the shear modulus enters only in the form of the
ratio µ/Lp we adopt the convention that µ = 80GN/m2 is fixed whereas we consider
Lp to be an uncertain parameter, to be fitted to measured data.

3 The string model

The string is modeled as a cylinder of radius rs, mass density ρ, and tensile forces are
determined by Young’s modulus E, which is about 150− 210GN/m2 for spring steel.
As indicated in Fig. 1 the string is divided into speaking and a non-speaking parts
with lengths Ln and Ls. The string passes over the V-bar, which deflects the string
from a straight line from bridge to pin by amount dV . There is an additional contact
point, the pressure bar, indicated in the figure, which we ignore in our model as the
friction force is much less at that point than at the V-bar. The change in tension ∆F

Figure 1: String is attached to the bridge, runs over the V-bar which is raised a
distance dV and attached to the pin. The upper segment of the string is the non-
speaking segment of length Ln and the lower segment of length Ls is struck by the
hammer. The tensions in the two segments are Fn and Fs. The pressure bar that we
neglect in the model is indicated by the dotted arrow.
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in a string segment of length L when stretched by a small amount ∆L is given by

∆F = κ∆L/L. (4)

with

κ = πr2sE (5)

the spring constant of the string. For a string of length L under tension F the relation
between sounding frequency and tension is given by Mersenne’s law

F = πr2sρ(2Lf)
2. (6)

If the tension changes by an amount ∆F the sounding pitch changes by an amount
∆f determined by the simple equation

∆f

f
=

∆F

2F
. (7)

In terms of cents this reads

c =
600

log(2)

∆F

F
, where (8)

c =
1200

log(2)
log((f +∆f)/f). (9)

The friction force at the V-bar is modeled as Coulomb friction and limited to a
maximum value FV , i.e.,

|Fn − Fs| < FV . (10)

If the coefficient of friction is γ, we can compute FV if we know the normal force and
obtain

FV = γ
dV
Ls

F0 (11)

which is valid for small dV . Note that this depends only on the product γdV so we
define a reasonable value for dV = 1cm which we consider fixed, and consider γ to be
the uncertain parameter, to be fitted by measurements.

During loud playing (or by applying a test blow) the vibrations in the string reduce
the coefficient of friction, causing a possible shift in pitch. We describe this process
by a factor 0 ≤ sf < 1 which multiplies the coefficient of friction during playing.

An additional factor that comes into play during a test blow is the increase in
tension in the string when excited loudly. This introduces a non-linear effect which
has a complicated effect on the vibration [2]. For our purposes all we need to know
is how much the effective string tension in the speaking segment increases at a test
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blow as this will apply an additional force across the V-bar. A consequence of this
phenomena is the well-known effect that a test blow usually lowers the string pitch
when the tuning is not stable, but never or rarely raises it. Without incorporating this
non-linear effect the pitch would raise on a test blow if the non-speaking segment had
a higher tension, which is not observed. We describe this effect by a dimensionless
parameter β which increases Fs to (1 + β)Fs during a simulated test blow.

4 Measuring the parameters

The model we describe in the previous sections contains 13 numerical parameters,
and here we describe how to obtain them. Starting with the easiest ones, the V-bar
elevation dV and the pin shear modulus can be fixed to dV = 1cm and µ = 80GN/m2

as these only appear in the model in the form of the product dV γ and the ratio
µ/Lp. Next we measure the string speaking and non-speaking lengths with a tape
measure, and the pin and string diameters with a micrometer. The pin diameter is
best measured around the string coil and the model pin radius rp is then just half the
measured diameter minus half the string diameter, i.e., rp is the radius of the coiled
string center.

The mass density ρ of the string has the value for spring steel, ρ = 7850kg/m3.
This value varies only a little for various types of steel. To obtain the pin stiffness σp
we need to take torque measurements, which will also give us a check on ρ.

With a torque wrench we measure the torque τL required to turn the pin counter
clockwise, and the torque τR required to turn clockwise. We’ll have τL < τR as the
string applies its own torque to the pin. Because of the geometry of the torque wrench
used, some lateral force is applied to the pin as well, which could affect the readings,
so we can not expect too much accuracy. We have

τL = τmax − rpF0 (12a)

τR = τmax + rpF0 (12b)

from which we obtain

rpF0 =
1

2
(τR − τL) (12c)

σp =
τR + τL
τR − τL

. (12d)

Measurements on the three A4 (440Hz) strings of a Heintzmann upright piano
gave rp = 3.9mm, rs = 0.5mm, Ls = 37.5cm and the torques for the left, middle and
right strings were τR = (13.6 14.1 15.3)Nm and τL = (8.1 9.0 10.2)Nm. The tensions
derived from this are Fs = (705 654 654)N . Using Mersenne’s law (6) this gives us
three estimates of the mass density, ρestimated = (8244 7645 7645)kg/m3, which are
close enough for comfort to the theoretical value of ρ = 7850kg/m3. The values of
the pin stiffness coefficient are obtained from (12d): σp = (3.9 4.5 5.0).
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The value of Young’s modulus is obtained by recording the angle ϕ by which we
have to turn the pin to lower the pitch by a semitone. Using (4), (5), and (8), and
∆L = rpϕ we can solve for E. For the three A4 strings we measured ϕ = (3.6 2.9 2.9)◦

from which we obtain E = (159 183 183)GN/m2, which are reasonable values. We
shall use the average of the three, E = 175GN/m2.

The four remaining parameters are the string coefficient of friction γ, the effective
pin length Lp, the factor β which parametrizes the non linear tension increase during
a test blow, and the friction reduction during test blow factor sf . We find values for
these parameters by running the simulation and adjusting them by trial and error to
match observed behavior under the following tests.

We lower (raise) the pitch a bit using a smooth motion, then hold the tuning lever
fixed (i.e., under torque) and apply a test blow. The shift in pitch after the test blow
is then measured. The same experiment is performed but instead of holding the lever
fixed we release it. For the piano under consideration no pitch shift was observed
when raising pitch under both conditions, whereas going the opposite direction the
pitch dropped by 3¢ when fixing the lever and by 2¢ otherwise. The reason for the
difference is the untwisting of the pin when we release the lever which increases the
tension (which was lower than in the speaking section) in the non-speaking segment,
hence leading to a smaller drop in pitch. The fact that the pitch was not observed
to raise when holding the lever fixed when raising pitch, even though the tension in
the non-speaking section is as high as it can be can only be explained by the effect
of the parameter β. In the case of releasing the lever first the untwisting of the lever
will also counteract the tendency for the pitch to rise as it will reduce Fn.

We list the values used for the left A4 string in Table 1.

5 Tuning up (down)

Suppose everything is in equilibrium, we have Fn = Fs, and the pin will have a certain
(positive) twist ψ.

Assume the pitch is too low (high) and we raise (lower) it by slowly turning
the pin (couter) clockwise. Note that we position the pin with the lever, so the
torque on the pin block is uniquely determined and not dependent on the string.
At first the tension Fn in the non speaking segment will rise (drop), but it will be
balanced by a downward (upward) friction force at the V-bar. So Fs and the pitch
does not change. Once the tension differential across the V-bar becomes larger than
FV , the maximum friction force, the string will slide up (down) over the V-bar,
thereby increasing (decreasing) the tension Fs and raising (lowering) the pitch. Since
now Fn = Fs + FV (Fn = Fs − FV ), the maximum differential force allowed, a test
blow at this point (without moving the lever) would result in a reduction in tension
differential, so Fs would increase (decrease) and the pitch would go up (down). The
reason was the higher (lower) tension in the non-speaking segment.
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A4
f 440Hz
Ls 37.5cm
Ln 10cm
rs 0.5mm
(dV ) 1cm
E 175GN/m2

ρ 7850kg/m3

rp 3.9mm
σp 4.1
(µ) 80GN/m2

Lp 2mm
γ 0.08
β 0.008
sf 0.4

Table 1: Parameters values. Red variables are pin parameters. Values below the
horizontal line are uncertain, in that they can not be measured directly. As discussed
before the V-bar elevation dV and the pin shear modulus µ can be considered given
(hence parenthesized in the table) as they only enter in the model through the product
dV γ and the ratio µ/Lp.

If instead we remove the lever something else happens. Because we have turned
the front of the pin (counter) clockwise the base lags a bit behind, in other words we
will have a negative (positive) twist ψ which is at its maximum value assuming the
lever was turned enough to cause the pin base to move. If we now let go of the lever,
the string will pull the pin counter clockwise (clockwise) to bring the twist back to
its equilibrium value. This will reduce (increase) Fn by a certain amount. This can
be a positive thing, as when we now apply a test blow the tension differential may
be small enough to keep the note at pitch. However it may not reduce (increase)
Fn enough in which case the pitch will raise (drop). Another possibility is that this
reduces (increases) Fn so much to change the sign of the tension differential so that
Fn < Fs (Fn > Fs) after removing the lever. This may cause an immediate drop
(raise) in pitch or a drop (raise) after a test blow.

Note that when we tune up the effect of pitch twist is much stronger as the existing
positive twist due to the string tension has to be reversed whereas when tuning down
the twist is in the same direction.
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6 Tuning simulation

We model the tuning process by prescribing a lever trajectory θ(t) over “times” t and
computing what happens to the system. Let us assume we are in stable configuration
described by the state variable vector S = (Fn, Fs, ψ) and compute what happens
when the pin is rotated by a very small amount ∆θ. We then divide the lever tra-
jectory in small segments and compute the state over the discretized trajectory on
step at a time. We will also want to calculate what happens at each point in the
trajectory under three actions: 1) release the lever, 2) release the lever and apply a
test blow, and 3) apply a test blow while holding the lever in place. The third action
never occurs in normal tuning, but we will compute the result here anyways as this
action is useful to calibrate the uncertain parameters of the model.

6.1 Turning the lever

We start by computing what happens if we just turn the lever. When the lever turns
by ∆θ the twist changes according to

ψ̂ = ψ +∆θ. (13)

(Hatted quantities indicate the new value.) The maximum allowed twist magnitude
is

ψmax =
Lp

Jµ
τmax (14)

according to (2) and (3). So if ψ̂ > ψmax we set ψ̂ = ψmax, if ψ̂ < −ψmax we set
ψ̂ = −ψmax (physically the base of the pin turns), and otherwise it becomes (13).
Next we compute the new force F̂n assuming the string does not shift at the V-bar.
If it turns out that

|F̂n − Fs| ≤ FV (15)

with FV given in (11) we are done. The change in length of the non-speaking segment
is

∆L = rp∆θ (16)

so according to (4) the change in Fn is

∆Fn = −κ∆L/Ln (17)

and Fs does not change.
If (15) is not satisfied we have to calculate the shift ∆V over the V-bar which will

be positive (up) if F̂n − Fs > FV and negative (down) if Fs − F̂n > FV . The former
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can happen when the pin turns clockwise, ∆θ < 0. In that case the length change
will be ∆L+∆V and the new force is

F̂n = Fn − κ(∆L+∆V )/Ln. (18)

The new force in the speaking segment is now

F̂s = Fs + κ∆V/Ls. (19)

Finally the tension differential must be maximal (i.e., the shift stops when the static
friction stops the process) which gives the condition

F̂n − F̂s = FV (20)

from which we can solve for ∆V giving

∆V =
Lns

κ
(Fn − Fs − FV )−

Lns

Ln

∆L (21)

with ∆L given by (16) and Lns is the harmonic average of the string lengths

Lns = 1/(
1

Ls

+
1

Ln

). (22)

New updated forces are now obtained from (18) and (19). Repeating this for the
down case ( Fs − F̂n > FV ) gives the same formulae except in (21) we have to change
the sign in front of FV .

6.2 Releasing the lever with or without test blow

Next we determine how to compute the state change when the lever is removed
perhaps followed by a test blow. This will determine the final pitch. When the lever
is removed the pin will twist back to its natural position. When that happens the
length of the non-speaking segment changes, hence the force and this may or may
not cause the string to slide over the V-bar, thereby changing the final pitch. If we
consider a simultaneous test blow we just have to multiply FV by a factor sf and
recall that the downward pull across the V-bar from the speaking segment is now
(1 + β)Fs. In the analysis below we will assume a test blow. To obtain the effect of
releasing the lever without a test blow just set β = 0 and sf = 1 everywhere.

As before we first pretend that there is no shift at the V-bar and calculate the
new force F̂n. If it turns out that

|F̂n − (1 + β)Fs| ≤ sfFV (23)

holds we are done, if not we have to incorporate a shift ∆V such that all forces
balance and the tension differential is maximal. For the first case (i.e., (23) holds)
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the pin base torque and torque caused by the string have to be equal. If the pin turns
by ∆θ we obtain the condition

Jµ

Lp

(ψ +∆θ) = rp(Fn −
κrp∆θ

Ln

) (24)

with solution

∆θ =
rpFn − Jµψ/Lp

Jµ/Lp + κr2p/Ln

. (25)

The new state is now given by F̂s = Fs, ψ̂ = ψ +∆θ and F̂n = Fn − κrp∆θ

Ln
.

If the string shifts we first consider the case

F̂n − (1 + β)Fs > sfFV . (26)

The differential tension will now pull the string an amount ∆V up over the V-bar
until the tension differential reaches sfFV . We now have

Jµ

Lp

(ψ +∆θ) = rp(Fn −
κrp∆θ

Ln

− ∆V

Ln

). (27a)

The condition F̂n − (1 + β)Fs = sfFV translates to

Fn −
κrp∆θ

Ln

− κ∆V

Ln

− ((1 + β)Fs +
κ∆V

Ls

) = sfFV . (27b)

We now have two equations (27) for the two unknowns ∆θ and ∆V which we solve.
The updated state is now

ψ̂ = ψ +∆θ (28a)

F̂n = Fn −
κrp∆θ

Ln

− κ∆V

Ln

(28b)

F̂s = Fs +
κ∆V

Ls

(28c)

If instead (1 + β)Fs − F̂n > sfFV the same formulae apply except for a sign change
for FV in (27b).

6.3 Test blow without releasing the lever

Now we hold the lever in a fixed position and apply a test blow. shift at the V-bar.
If it turns out that

|Fn − (1 + β)Fs| ≤ sfFV (29)
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nothing happens. If (29) is not satisfied we have to calculate the shift ∆V over the
V-bar which will be positive (up) if Fn − (1 + β)Fs > sfFV and negative (down) if
(1 + β)Fs − Fn > sfFV . In that case the new forces are

F̂n = Fn − κ∆V/Ln. (30)

and

F̂s = Fs + κ∆V/Ls. (31)

The tension differential must be maximal (i.e., the shift stops when the static friction
stops the process) which gives the condition

F̂n − (1 + β)F̂s = sfFV (32)

from which we can solve for ∆V giving

∆V =
Lns

κ
(Fn − (1 + β)Fs − sfFV ) (33)

New updated forces are now obtained from (30) and (31). Repeating this for the
down case ( (1 + β)Fs − Fn > sfFV ) gives the same formulae except in (33) we have
to change the sign in front of FV .

7 Simulation results

The methods described have been implemented in software using MATLAB. We use
the default parameter values for the left string of A4 as indicated in Table 1 unless
otherwise indicated. These values were taken from a Heintzmann upright piano. The
“uncertain” parameters were obtained by trial and error to obtain the correct pitch
changes on test blows with or without releasing the lever when lowering and raising
pitch as measured on the Heinzmann upright.
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Figure 2: Simulation of tuning A4. Parameters are as in Table1. Positive angles are
clockwise, unlike in the main text.
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In Fig. 2 we show the results for a specific lever trajectory. The lever is turned
counter clockwise by 0.5◦, then 1◦ in the other direction, and then 0.5◦ back to the
starting point. The upper graph depicts the lever trajectory subdivided in 1000 steps
in the dashed line. The vertical scale is multiplied by 10 to allow the simultaneous
plot of the cent shift in pitch as heard by softly playing the note, which is the solid
line. For instance at step 200 the angle is −0.4◦ and the pitch is lowered by 5.3¢.

The middle graph shows the result of taking one of three actions when the lever
is at the corresponding position. The solid blue line indicates the additional pitch
change if we just let go of the lever. It is zero everywhere here, but if the pin block
was tighter it could be different. The red dashed line shows what would happen if we
held the lever fixed at the current position and would apply a test blow. The solid
red line shows what would happen if we let go of the lever and then applied a test
blow. It is the latter condition that determines the final stable pitch.

Continuing the same example at 200 we see nothing happens if we release the
lever, but if a test blow was applied the pitch would drop an additional 2.9¢, the total
pitch change from the beginning thus 8.2¢. Similarly, releasing the lever followed by
a test blow results in an additional pitch drop of 2.2¢, a total change in pitch of 7.5¢.
This is less of a drop than when the lever was not released, which is caused by the
pin untwisting and increasing Fn, reducing the downward shift across the V-bar upon
a test blow.

Finally in the bottom graph we depict the tension differential across the V-bar,
relative to its maximum possible value FV . The plot labeled “tuned” is the tension
when we move the lever in the prescribed trajectory, the other three correspond to the
same scenarios as in the middle plot. Note that the solid red line which represents
the stable configuration has a non zero tension differential which is caused by the
effect of the increased string tension during a test blow. Note that the pitch changes
only when the tension differential magnitude is maximal (dotted blue line). When
we release the lever when tuning down, the pin twists clockwise and the differential
becomes less negative. When tuning up the pin twists much more upon release and
the tension differential drops signicifcantly from +1. The result is a large drop in
pitch upon release/test blow when tuning down, but only a negligible drop when
tuning up.

If for example the goal was to lower the pitch stably by 3¢ this could be achieved
by stopping at time 91, when the pitch has dropped by 0.8¢. A release/test blow
would then drop an additional 2.2¢ to get the desired pitch. Alternatively we could
approach the pitch from above by stopping at time 525 when the pitch has dropped
2.8¢ and the release/test blow would cause an additional 0.2¢ drop in pitch. As 0.2¢
is close to the threshold of practical significance a practical method would be to just
approach the pitch from below and stop when the desired pitch has been reached. If
we decided to approach from above we would have to stop with the note 2.2¢ sharp,
which is more difficult.

In practice we would lower the pitch until the note heard is the desired 3¢ flatter
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(at time 145) and then turn the lever clockwise to stabilize the pitch. This method
is illustrated in Fig.3. Note we have to turn the lever almost back to its original
position.
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Figure 3: Possible lever motion to stably lower note by 3¢.

Acknowledgments

The author would like to thank Mark Cersano for several fruitful discussions.

References

[1] K. W. Burton. Different Strokes: Hammer Techniques for Piano Technicians.
Potter Press, 1998.



15

[2] G. F. Carrier. On the nonlinear vibrations problem of elastic string. Quart. J.
Appl. Math., 3:157–165, 1945.

[3] A. A. Reblitz. Piano Servicing, Tuning, and Rebuilding. Vestal Press, New York,
1993.


	Introduction
	The pin model
	The string model
	Measuring the parameters
	Tuning up (down)
	Tuning simulation
	Turning the lever
	Releasing the lever with or without test blow
	Test blow without releasing the lever

	Simulation results

