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Abstract

I show that equal beating 4:2/6:3 octaves (called 4:2+ octaves) results in an
approximately equal beating 2:1 octave as well as long as the inharmonicity is
increasing when going up, i.e., above the break. The consequences for 4:1 and
8:1 double and triple octave beat rates is also analysed.

1 Partials, beats, and cents

Let’s start by reviewing some basic formulae and definitions.
Suppose we have two single frequencies (sine waves) x and y, measured in Hertz

(or any other units). The cent distance c between y and x is per definition

c =
1200

log 2
log(y/x), (1)

with log the natural logarithm. If x and y are very close we will hear a beat with
frequency (beatrate) b = |y − x|. The beatrate is given very accurately in terms of
the cent difference by

b =
log 2

1200
cx. (2)

For example is x = 440Hz and c = 1 we get b ≈ 1/4, i.e., one beat every 4 seconds
for a 1 cent detuned A4 unison.

A real piano tone is composed of not just a single frequency but a set of partials.
In the absense of inharmonicity the partial frequencies are x, 2x, 3x, . . . with x the
fundamental frequency. In terms of cents the distance of the i-th partial from the
fundamental is given by

c(i) =
1200

log 2
log(i), i = 1, 2, 3, . . . (3)
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In a real piano the partials are all shifted up by a small amount, and effect called
inharmonicity. We consider here the Young model [2] and a more realistic modifi-
cation thereof based on piano data by Robert Scott as implemented in Tunelab [1].
According to this model each partial i is offset by an amount B(ai − 1) where B is
the inharmonicity constant of the note and the coefficients ai are given by

ai = i2 (4)

in the Young model and are given by

a1 = 1

a2 = 4

a3 = 8.45

a4 = 13.18

a5 = 19.72

a6 = 27.27

a7 = 35.53

a8 = 46.25 (5)

by the Tunelab model. Values for higher partials can be found in the Tunelab manual.
Formula (3) is thus modified to

c(i) =
1200

log 2
log(i) + B(ai − 1). (6)

2 Tuning the octave by partial matching

Consider tuning a note N2 an octave above a note N1. Both notes have a partial
structure given by (6), but will have different inharmonicity constants B which we
call B1 and B2. Above the break B2 will be about twice the value of B1.

Let’s measure all the partials in cents relative to the fundamental of N1. Also,
let’s assume we first tune N2 so that its fundamental is exactly 1200 cents above the
fundamental of N1 and then adding a stretch of s2 cents, where the value of s2 is
to be determined later. The cent values of the i-th partials of both notes (w.r.t the
fundamental of N1) are now given by

c1(i) =
1200

log 2
log(i) + B1(ai − 1)

c2(i) = 1200 +
1200

log 2
log(i) + B2(ai − 1) + s2. (7)

As a warm-up excercise, let’s compute the stretch s2 first for a 2:1 octave. We want
the second partial of N1 to match the first partial of N2, so the equation to solve for
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s2 is c1(2) = c2(1) which reads

1200 + B1(a2 − 1) = 1200 + s2, (8)

where we have used a1 = 1. We thus get for a 2:1 octave the stretch

s2[2 : 1] = B1(a2 − 1). (9)

For example if N1 = C4 and using a typical value B1 = 0.404 we get a stretch of 1.21
cents. We can calculate the theoretical stretch for the 4:2 and 6:3 octaves in the same
manner by solving c1(4) = c2(2) and c1(6) = c2(3) which gives

s2[4 : 2] = B1(a4 − 1)− 3B2 (10)

and

s2[6 : 3] = B1(a6 − 1)−B2(a3 − 1). (11)

We see that the larger B2 is, i.e., the steeper the inharmonicity curve is, the less
stretch is required for these octaves. Taking the “average” values for C4 and C5
from the Tunelab sample data, B1 = 0.404 and B2 = 1.116 this gives stretches of
s2[4 : 2] = 1.57 and s2[6 : 3] = 2.3 cents.

3 Tuning the octave by equal beating 4:2 and 6:3

Next we will compute the stretch required for the 4:2+ octave, which has equal beating
4:2 and 6:3, with 4:2 being wide, and 6:3 narrow. First we need the cent difference
∆(i) between partial i of N2 and partial 2i of note N1. Using (7) we get

∆(i) = c2(i)− c1(2i) = B2(ai − 1)−B1(a2i − 1) + s2. (12)

A positive ∆(i) means the 2i : i octave is wide, a negative means it is narrow. The
beat rate b(i) of this difference according to (2) is given by

b(i) =
log 2

1200
∆(i)2if0 (13)

where f0 is the frequency of the fundamental of N1. Note that the frequency of partial
2i is not exactly 2if0 but the difference is very small and lies beyond the threshold of
hum beat speed discrimination. The beat frequency (or rate) of the 2i : i octave as
given by (13) is positive if the octave is wide, and negative if narrow. We now want
to find s2 such that b(2) = −b(3), i.e., the 4:2 beats wide at the same speed the 6:3
beat narrow. Using (13) and (12) we obtain the stretch s2

b(2) + b(3) = 0 ⇒
2∆(2) + 3∆(3) = 0 ⇒
2B2(a2 − 1)− 2B1(a4 − 1) + 2s2 + 3B2(a3 − 1)− 3B1(a6 − 1) + 3s2 = 0 ⇒
s2[4 : 2+] = (B1(2a4 + 3a6 − 5)−B2(2a2 + 3a3 − 5))/5. (14)
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If we use the numbers as after (11) we obtain a stretch of 2 cents. However if we used
Young’s model the stretch would come out to be about 4.2 cents, which is more than
twice as much!

With the 4:2+ stretch (14) in had we can now compute the beat rates of the
various octave partial matches by using (12) and (13). After some algebra we get
the 4:2+ octave 2i:i beat rates

b(i) =
f0 log 2

3000
[B1(2a4 + 3a6 − 5a2i)−B2(2a2 + 3a3 − 5ai)]i. (15)

For the Tunelab model this comes out to be for 4:2 as

b(2) = b4:2 =
f0 log 2

1200
(33.82B1 − 10.7B2). (16)

Of course be have b(2) = −b(3) which is easy to check. The big question is now,
what about 2:1? So let’s compute the beat rate difference between 4:2 and 2:1, i.e.,
b(2)− b(1) using (15). We get

b(2)− b(1) =
f0 log 2

3000
[B1(2a4 + 3a6 + 20− 10a4)−B2(2a2 + 3a3 − 35)]. (17)

Remarkably, for Young’s model ai = i2 the coefficients of B1 and B2 are both zero so
we have 2:1 beating at exactly the same speed as 4:2 and 6:3. For the tunelab model,
plugging in in the table values we obtain instead

b(2)− b(1) =
f0 log 2

3000
[1.65B2 − 3.63B1]. (18)

So if B2 = 2.2B1 we have 2:1 equal beating, and this relation is almost satisfied on
most piano scales. Even if it were not and we had B2 = B1 or B2 = 4B1 which
are extreme values probably not found on any real piano, we still have a beat speed
difference of only 0.1 and 0.14 Hz (or beats per second if you like): virtually equal
beating! For comparison the 4:2 (and 6:3) beat speed in this example is 0.5 Hz. On
the other hand, the 8:4 octave is quite narrow and beats at 6.4 Hz.

4 Double and triple octaves

Let us now imagine tuning N2 to N1 as a 4:2+ octave, and next N3 to N2 and N4 to
N3 with the same method. What will the double octaves (4:1) and triple octave (8:1)
be like?

To analyze this we extend (7) for the notes N1, . . . , N4, measuring all frequencies in
cents relative to the fundamental of N1 for analysis purposes. As the octave stretches
are cumulative we now obtain the following expression for the i-th partial of octave k

ck(i) = 1200(k − 1) +
1200

log 2
log(i) + Bk(ai − 1) +

k∑
j=1

sj. (19)
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where sj is the stretch of octave Nj −Nj−1 for j > 1 and for notational convenience
we define s1 = 0. The individual octave stretches are obtained from (14) as

sk = [Bk−1(2a4 + 3a6 − 5)−Bk(2a2 + 3a3 − 5)]/5, k > 1, (20)

where Bk is the inharmonicity constant of note Nk. To simplify notation let’s
write (20) as

sk = q1Bk−1 − q2Bk, k > 1, (21)

with

q1 = (2a4 + 3a6 − 5)/5 = 20.634 (27)

q2 = (2a2 + 3a3 − 5)/5 = 5.67 (6), (22)

where the numerical values are according to the Tunelab model and the parenthesized
values according to Young’s model.

It is now easy to obtain the 4:1 beat rate (of N1 versus N3) as

b4:1 =
log 2

300
f0[c1(4)− c3(1)] =

log 2

300
f0[s2 + s3 −B1(a4 − 1)]. (23)

Substituing the values from (21) gives

b4:1 =
log 2

300
f0[c1(4)− c3(1)] =

log 2

300
f0[(q1 + 1− a4)B1 + (q1 − q2)B2 − q2B3]. (24)

Numerically using the Tunelab model this gives

b4:1 =
f0 log 2

1200
(33.82B1 + 59.9B2 − 22.7B3) (25)

to be compared with for example the 4:2 beat rate of the N2N3 single octave given
by (16) which gives

b4:2 =
f0 log 2

1200
2(33.82B2 − 10.7B3). (26)

(Note the extra factor 2 as we are considering the second single octave.)
Let’s take (B1, B2, B3) = (0.404, 1.116, 2.12) from the Tunelab “average” tuning

file, corresponding to C4-C5-C6. Unfortunately both C5-C6 4:2 and the C4-C6 4:1
beat rates are about 9 Hz (both wide) which is much too high to be acceptable. The
C4-C5 4:2 beat rate remains good of course, about 0.5 Hz. The reason is that the
steeper the slow of the inharmonicity curve, the better the 4:2 octave is as follows
from (26), up to a limit of B3 ≈ 3B2 where both 4:2 and 6:3 become pure (at the
expense of 2:1).

As a second example let us consider the octaves F3F4F5F6 tuned according to
4:2+ for the case of a Kawai K3 for which I have the inharmonicity constants which
are (0.372, 0.566.1.56, 3.6). Plugging in the numbers we get an F3F4 4:2 beat rate of
0.5 Hz, an F4F5 4:2 beat rate of 5.7 Hz, and 33Hz for F5F6. The 4:1 beat rates are
1 Hz for F3F5 and 6 Hz for F4F6.
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5 Conclusions

The equal beating 4:2/6:3 octave (4:2+) leads to virtual identical beating rates of
also the 2:1 octave. Whenever the beat rate is slow in the absolute sense the theory
therefore support the notion that this is the aurally purest octave size.

However, this seems to apply only to the temperament octave, as outside the
temperament octave as it leads to much too fast beating 4:2 octaves and 4:1 double
octaves. Above this area the stretch has to be reduced, sacrificing the 6:3 octave
(which rapidly becomes too high pitched to be relevant anyways) for a slower 4:2
beat.
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