Particle System Collision Detection using Graphics Hardware

Dave Knott
University of British Columbia
and Radical Entertainment

1 Introduction

We demonstrate a technique for performing collision detection be-
tween dynamically simulated particle primitives and groups of im-
plicitly defined objects. We describe how this collision detection
can be performed using a programmable vertex engine.

We use the particle collision detection in the context of visual
simulation, which requires no CPU intervention. We also provide
a method for reporting collision information back to the CPU for
further processing, using a construct called the impact map.

2 Particle Simulation

We simulate particles[Reeves 1983] whose behaviour is described
by closed-form equations of motion. A particle’s defining parame-
ters are specified once and never change. This allows us to create
simulations in which the properties of particles are computed on
graphics hardware using vertex programs/shaders[Lindholm et al.
2001]. For purely graphical applications, the computer’s CPU need
never participate, except to pass data to the graphics accelerator at
each frame of the animation.

The motion of particles is completely determined by initial con-
ditions, with the exception of impacts with (and possible response
to) interfering bodies. Instantaneous particle position is given by
a parametric equation p = g(t), where t is global simulation time.
Particles may impact with colliders, surfaces defined implicitly by
some equation, f(p) =0, where p is a point on the surface.

The intersection of a particle’s motion with the surface is then
described by h(t) = f(g(t)) = 0, which implicitly gives the colli-
sion time, t. Each collider may also have associated constraints,
c(p) > 0. These are useful in detecting collisions with bounded
planar sections, or objects with holes, for example.

We can currently test for collisions between planar sections and
particles obeying second-order dynamics. We can also test for col-
lisions between first-order particles and quadric surfaces.

Figure 1: Examples of collision

3 Collision Feedback

The impact map is a two-dimensional representation of the loca-
tions on colliders at which particles have impacted. At each sim-
ulation step, a GPU vertex program computes whether or not each
particle has impacted a collider at some time between the previ-
ous and current frames of the animation. If a collision is detected,
then a two-dimensional representation of the exact impact location
is calculated. A point primitive is drawn into the impact map at that

contact e-mail: {knott|kvdoel|pai}@cs.ubc.ca

Kees van den Doel
University of British Columbia

Dinesh K. Pai
University of British Columbia
and Rutgers, The State University of New Jersey

location. The colour channels of the impact map can be used to
store information about collisions, such as impact energy.

Figure 2: Collision with response and the associated impact map

Applications such as audio simulation require collision informa-
tion at rates much higher than those achievable with graphics hard-
ware. The closed-form nature of the simulation allows us to achieve
super-resolution results. Exact collision time is reported in the im-
pact map, which is rendered slightly ahead of the visual simulation.

For static or precomputable collision information, we can save
CPU cycles by storing the data in texture memory. Collision data is
reported in the impact map via a dependent texture look-up.

4 Results

We have implemented an audio-visual simulation of hail falling on
an outdoor scene. Hail is simulated as particles with motion defined
by second-order dynamics. We perform collision detection between
each hail particle and a variety of objects, as shown in Figure 3.

Figure 3: Hailstone particles colliding with outdoor objects

We use collision feedback for two purposes. For visual simu-
lation, a decal” texture is rendered wherever a hailstone impacts
with a collider object in the scene. We also drive an audio simula-
tion that uses modal synthesis to generate sound[van den Doel et al.
2001] when hail strikes colliders. Future directions include using
the dependent texture look-up to report sound synthesis parameters
via the impact map.

References

LINDHOLM, E., KILGARD, M. J., AND MORETON, H. 2001. A user-
programmable vertex engine. In Proc. of SGGRAPH 2001, 149-158.
REEVES, W. T. 1983. Particle systems - a technique for modeling a class

of fuzzy objects. In Proc. of SGGRAPH 83, 359-376.
VAN DEN DOEL, K., KRy, P. G., AND PAl, D. K. 2001. FoleyAutomatic:

Physically-based sound effects for interactive simulation and animation.
In Proc. of SGGRAPH 2001, 537-544.

