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ABSTRACT
We describe the design and implementation of an adaptive
system to map control parameters to modal audio synthesis
parameters in real-time. The modal parameters describe the
linear response of a virtual vibrating solid, which is played
as a musical instrument by a separate interface. The sys-
tem uses a three layer feedforward backpropagation neural
network which is trained by a discrete set of input-output
examples. After training, the network extends the training
set, which functions as the specification by example of the
controller, to a continuous mapping allowing the real-time
morphing of synthetic sound models.

We have implemented a prototype application using a con-
troller which collects data from a hand-drawn digital pic-
ture. The virtual instrument consists of a bank of modal
resonators whose frequencies, dampings, and gains are the
parameters we control. We train the system by providing
pictorial representations of physical objects such as a bell or
a lamp, and associate high quality modal models obtained
from measurements on real objects with these inputs. Af-
ter training, the user can draw pictures interactively and
“play” modal models which provide interesting (though un-
realistic) interpolations of the models from the training set
in real-time.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing ]: Systems, Signal
analysis, synthesis, and processing; J.5 [Arts and Human-
ities]: Performing arts (e.g., dance, music)

1. INTRODUCTION
Musical instruments are usually selected before a perfor-

mance and then played in real-time. Occasionally a versa-
tile performer may play several instruments during a piece,
sometimes even simultaneously. However, switching instru-
ments is usually not considered to be part of the performance
skills of the artist but taken more or less for granted.
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This metaphor has been propagated to digital instruments
which have elaborate real-time controllers (keyboard, MIDI
wind-controller, drum pad, etc.) for playing the instrument,
but simple switches to select the instruments or “presets”.

Physical musical instruments allow a limited amount of
real-time modification of the instrument’s behavior, and in
the 20th century music composers have moved some of these
controls into the performance area. For example requiring a
cello player to retune a string while playing, can extend the
scope of the instrument.

Synthetic digital instruments using real-time audio syn-
thesis [26] offer the possibility to make the virtual instru-
ment completely flexible and, by changing the synthesis pa-
rameters in real-time, allow the morphing of different instru-
ments into each other. This gives the performer the ability
to control the nature of the instrument itself in real-time but
poses the challenge of finding intuitive and natural interfaces
to control these “design parameters”.

In this paper we describe a software system which at-
tempts to provide a generic framework to construct real-time
controllers for digital synthesis algorithms. Our system uses
a backpropagation neural network to map the control vari-
ables, which the performer directly controls, to the synthesis
variables in a configurable and adaptive way. This is done
by training the network on a set of input-output pairs which
describe some of the desired properties of the mapping. This
can be thought of as defining a collection of instrument pre-
sets which are specified by input variables of the performers
choice. Once the network is trained, a real-time control map
is generated which generalizes the training set to a continu-
ous map allowing continuous control. Because of the neural
network’s ability to detect features, we believe this mapping
is able to generalize the performer’s intent in some sense,
rather than just provide some arbitrary interpolation.

1.1 Related Work
There have been several attempts to create adaptive map-

pings between gesture and sound. Most notably, [13] used
neural networks to map hand gestures to speech formant
amplitudes and frequencies, which were excited by a differ-
ent controller. The neural networks allowed the system to
learn the relationship between the speaker’s mental model
space and the actual sound space. The speaker thus needed
only to work in the relatively easy articulatory space instead
of formant space.

A combination of neural networks and fuzzy logic software
intended for real-time musical instruments control written
in the MAX real-time programming environment was de-



scribed in [15]. An adaptive conductor follower based on
neural networks was described in [16].

Of course, many hand-crafted systems to help facilitate
learning the mapping between gesture and music have been
attempted. For example, refer to [25, 12] for a description
of a number of these devices. These mappings strategies all
depend upon the intuition of the designer. Several common
strategies have been developed to make the mapping easy to
learn and understand. One typical strategy is to instrument
a pre-existing acoustic instrument such as a cello [17] or sax-
ophone [1]. This approach has the advantage of constraining
the player’s gesture space to a predefined, already learned
space. Unfortunately, the output space may not have any
obvious relationship to the gestures. Another technique uses
objects that already have clear affordances [21] for control
but are not necessarily based on acoustical instruments [2].
Objects such as a coffee mug can be instrumented and in-
teractions with them mapped to sounds. While the map-
ping may not be clear at the outset, the fun of the interface
form encourages a player to begin making sounds and ex-
ploring the interface. Other strategies include the use of
metaphors [12].

In all the situations above, an adaptive system may be
helpful in improving the transparency of the mapping. By
carefully choosing the objective space and letting an adap-
tive algorithm match this to the player’s mental model of the
gesture-to-sound mapping, improvements should be possi-
ble. The role that the mapping plays in determining whether
a musical interface is expressive is very complex [23]. The
adaptive interface is one technique to help make new inter-
faces for musical expression.

1.2 Overview
Our prototype system has been applied to generate a con-

trol strategy for modal synthesis using hand-drawn greyscale
pictures. Several pictures are associated with physical mod-
els of the objects they are intended to depict, which are
linear modal models whose parameters were obtained by fit-
ting them to sound recordings of real objects. Modal mod-
els of “everyday” objects such as lamps, kettles, coffee cups,
etc. require anywhere from 4 to 100 modes for high quality
sounds, which results in 12 − 300 synthesis parameters to
control, which is a very large space. This space contains the
linear sound behavior of every imaginable rigid body, from
wooden tables to the liberty bell, to the sound of an oddly
shaped piece of scrap metal lying on some junkyard! Be-
cause of the large size of the sound space it is not possible
to manually design the coupling of every synthesis param-
eter to some physical controller, and the need for a more
automated approach to control such as that proposed in
this paper becomes apparent.

Because there are so many synthesis parameters, we need
a control space which is large enough to reach a substantial
portion of the possible sound models. The greyscale level
of the pixels of an image provide this large control space.
After training the network on the examples, we deploy the
trained network in a real-time application where the user can
interactively draw a picture and have the modal parameters
change in real-time. This simple interface requires no special
hardware and is easy to work with, even for non-musicians,
and therefore allows us to use it as a good testbed applica-
tion for our controller design. We believe it also results in
an very entertaining sonified drawing application.

The modal model can be excited by any means (or could
be embedded in a more complicated synthesis patch) and
for testing purposes we use impulses, noise excitations and
a live data stream from a contact mike [4] which allows a
more direct interaction with the virtual object.

The remainder of this paper is organized as follows. In
Section 2 we describe and justify our control model and es-
tablish some notation. In Section 3 we describe our instru-
ment model and design and summarize modal synthesis. In
Section 4 we describe our prototype application and results
obtained, and conclusions and directions for future work are
presented in Section 5.

2. THE CONTROL MAP
To articulate the problem we find it useful to describe the

mapping in a somewhat abstract manner. Let us denote the
continuous synthesis parameters describing a virtual instru-
ments by an N -dimensional vector � = {θ1, . . . , θN}, which
we can visualize as a point in “instrument space” Θ. This
space consists of all possible virtual instruments that can be
modeled by changing parameters of a synthesis algorithm.
A “preset” of an algorithm corresponds to a single point in
Θ. We can visualize a conventional synthesizer with preset
buttons as consisting of a cloud of points in Θ which we can
navigate with buttons (or some other discrete interface).

A continuous interface to instrument selection allows the
performer to navigate smoothly between the presets and
for example morph a woodblock into a gong while playing.
However, its is not clear how to move from one preset to
the other in the most natural way. Naively one could inter-
polate linearly in parameter space but this is arbitrary and
does not “sound linear”.

For example, let us morph the sound of a bell into the
sound of a desk lamp by a linear trajectory in modal space
(consisting of the frequencies, dampings, and gains), and
control this with a single parameter λ which runs from 0
(a metal desk lamp) to 1 (a church bell). An interactive
application which runs in most web browsers demonstrat-
ing this can be found on the web [6]. If we start at 1 and
decrease λ, we first hear the bell going out of tune. Some-
where around λ = 0.9 the bell character is lost and from 0.9
to around 0.1 it sounds like “some metal object”, but the
character of the sound remains fairly constant until we come
close to the lamp, around λ = 0.1 when the sound appears
to rapidly “come into focus” and morph into the sound of a
desk lamp. This somewhat subjective description illustrates
the fact that though the trajectory is linear in parameter
space and we move uniformly from one point to the other,
what we hear does not sound linear and uniform at all.

Another challenge in designing interfaces is to provide ges-
tural metaphors which are natural to the performer. Con-
trolling motion in Θ adaptively allows the performers to cus-
tomize the mapping according to their own peculiarities and
wishes within the same system. A control interface is a con-
tinuous mapping

κ : C −→ Θ

from a control space C to the instrument model space Θ.
The K-dimensional space C consists of all possible settings
of the control variables c = {c1, . . . , cK}. These control vari-
ables are obtained from sensors such as Cybergloves, posi-
tion trackers, etc. and are controlled by the performer in
real-time.
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Figure 1: Control space C and instrument space Θ.
The discrete preset mapping ρ is generalized to the
continuous mapping κ by training a 3 layer back-
propagation neural network on ρ.

Presets are input configurations (points in C) which are
mapped to fixed instruments. The preset configuration ρ is
defined by specifyingM pairs ρ = {{c1,�1}, . . . , {cM ,�M}},
where ci ∈ C and �i ∈ Θ. It is a discrete mapping ρ
from C to Θ. We shall notate the preset control set by
Cp = {c1, . . . , cM}, and the preset instrument set by Θp =
{�1, . . . ,�M}. See Figure 1 for the notation.

A natural framework for constructing the continuous map-
ping κ as a generalization of the discrete mapping ρ is a 3
layer backpropagation feedforward neural network [19] with
K inputs and N outputs which, appropriately scaled, pro-
vides the mapping κ. The preset configuration ρ provides a
set of M training examples, and training the network on this
set results in the desired mapping κ. An important feature
of neural networks is their ability to detect and generalize
features [19]. This is very relevant as the preset map ρ cap-
tures the performer’s metaphor for control. The continuous
interpolation of the preset configuration can incorporate fea-
tures which are detected during the training phase by the
neural net and generalize them. The preset configuration
can also be seen as the specification by example of the de-
sired behavior of the controller.

3. MODAL INSTRUMENT SPACE
A good physically motivated synthesis model for vibrat-

ing rigid bodies is modal synthesis [28, 14, 20, 3, 8, 9, 7,
22]. Modal synthesis models a vibrating object by a bank of
damped harmonic oscillators which are excited by an exter-
nal stimulus. See Fig. 2 for an illustration. The frequencies
and dampings of the oscillators are determined by the ge-
ometry and material properties (such as elasticity) of the
object and the coupling gains are determined by the loca-
tion of the force applied to the object. The impulse response
p(t) of the modal model with L modes is given by

p(t) =

LX
n=1

an exp(−dnt) sin(2πfnt), (1)

for t ≥ 0 and is zero for t < 0, where p(t) denotes the audio
signal as a function of time. The modal parameters are
the frequencies fn, the dampings dn, and the gains an. The
frequencies and dampings are pure object properties whereas
the gains also depend on the location of the interaction point

on the surface of the object. The model ignores phase effects.

Figure 2: Modal synthesis of the sound made by
hitting a bar with a hammer. The hammer force
is modeled by a contact force model, and send to a
bank of resonators, which is the modal model of the
bar. Each resonator has a characteristic frequency,
damping, and gain and the outputs of the resonators
are summed and rendered.

We create sound models with the FoleyAutomatic [7] sys-
tem, which allows the creation of realistic sound models
based on modal synthesis as well as various contact force
models which include striking, scraping, sliding, and rolling.
The FoleyAutomatic system is freely available from the web
as part of the JASS system [10, 5], a Java based real-time
audio synthesis toolkit. The modal models can be acquired
by parameter fitting to recorded sounds using the techniques
described in [24]. Preliminary user studies [11] have shown
that impact sounds constructed with this technique are in-
distinguishable from the real sound.

4. INTERACTIVE DRAWING
We have applied our adaptive controller framework to

an interactive drawing application which allows the user to
draw pictures on a square window. The picture is down-
sampled to 16× 16 greyscale pixels with values in the range
0 − 1. The pixels are taken as inputs to a neural net with
256 input units, 32 or 128 hidden units, and 60 output units,
allowing for modal models of 20 modes.

The neural network was designed using the Java Object-
Oriented Neural Engine (JOONE), an open-source neural
net package implemented in Java [18]. JOONE provides a
graphical environment to design multilayer neural networks,
train them, and export trained networks into real-time ap-
plications. All of the neurons are implemented as sigmoid
functions y = 1/(1 + e−x). The learning rate is set to 0.8,
and the momentum factor 0.3.

The 60 outputs of the net are numbers in the range 0− 1.



They mapped to the 60 modal synthesis parameters defined
in Equation 1, for L = 20 modes. For optimum training of
the neural net, the range 0 − 1 should be mapped as uni-
formly as possible to perceptually relevant parameters. For
instance, frequencies are perceived on a roughly logarithmic
scale, so we would like a linear change in outputs to produce
a logarithmic change in frequency. The three types of modal
parameters are handled separately in order to best take into
account the perceptual characteristics of the sounds.

For frequencies, we convert to the Bark scale [27], designed
to uniformly cover the human auditory range. It can be ex-
pressed as z = [26.81/(1 + 1960/f)] − 0.53, with f the fre-
quency in Hz. The result z is then scaled to between 0 and 1.
For damping, the conversion is given by (loge(d+ 1.0))/5.0.
It covers dampings of up to roughly 150/s, the most heav-
ily damped modes that occur in the specific physical mod-
els we have used. Gains are converted to decibels, and we
allow a range of 160dB, enough for most (non-lethal) ap-
plications. The conversion is given by 1 + dB(a)/160, with
dB(a) = 20 log10(a) the decibel level in the range −160dB
to 0dB.

The preset configuration consists of four hand-drawn pic-
tures depicted in Figure 3. The outputs corresponding to

Figure 3: The four input images to the neural net,
depicting a bell, a kettle, a wooden table, and a desk
lamp.

the images are modal models obtained from parameter fit-
ting to recorded sounds of the objects depicted, using the
20 most important modes selected by a perceptual criterion
as described in [11], which result in very realistic sounds.

Two neural networks were created, one with 32 hidden
units and one with 128 hidden units. Both were trained
until the error in frequencies was below 10 cents (one tenth
of a semitone). Errors in the dampings and gains are per-
ceptually much less noticeable, which is why we use the fre-
quencies as a convergence criterion.

Convergence required about 200 iterations, less than one

minute on a desktop computer with 733 MHz dual Pentium
III processors. In Figure 4 we show the average error of the
output as a function of the number of training epochs.

Qualitatively, we listened to the sounds at various stages
in the training, obtained by using a picture from the training
set as input. After 100 training epochs the results were rec-
ognizable as the target sounds but quite distorted, whereas
the sound was indistinguishable from the target at 200 train-
ing epochs.

After training, we tested our real-time drawing applica-
tion with fully converged nets containing 32 and 128 hidden
nodes, using various excitations. We did not notice any qual-
itative differences in the behavior of the nets, though there
were clear differences between them in sound for pictures we
drew which did not resemble any in the training set. The
interface allows us to load any of the pictures in the training
set and then interactively draw over them. Though the pre-
set configuration with just four presets is very minimal, we
were surprised by the richness of the interface. For example,
if we start with the bell, when its lower or upper portions are
erased, the sound changes dramatically and rapidly loses its
bell-like character. But if we erase parts of the picture start-
ing from the middle, the pitch of the bell seems to change,
and it is almost possible to etch out a shape inside the bell
such that the modes remain in tune and the bell character
of the sound is preserved.

If the picture is completely erased or completely black, we
do not get a silent model, but rather something which we
can only describe as “non-descript”. When we draw random
shapes, they sound just like that, like random sounds. It is
only when features of the input images appear in the drawing
that the sounds become “interesting”.

We find it very hard to describe the experience with the
interface, and intend to convert the application into a Java
applet and make it available on the web to interact with
through a standard web-browser.

5. CONCLUSIONS
This paper has described the design of a general frame-

work to control audio synthesis algorithms with many con-
tinuous parameters. The controller maps an input space,
which is the space in which the performer manipulates input
devices, into the parameter space of a synthesis algorithm
using a neural network.

The behavior of the controller is specified by example by
specifying a discrete set of input-output pairs, which we have
called the “preset configuration”. These examples capture
the performers intent and a neural network can possibly
extract enough features from the examples to generalize it
to a “natural” continuous mapping.

Our implementation consists of an interactive drawing ap-
plication, with the drawing functioning as the controller.
Through a neural network the drawing application is con-
trolling parameters of a modal synthesis algorithm. The
neural network is trained on a set of images with associ-
ated sound models. A real-time synthesis kernel then allows
the user to “play” this modal synthesis algorithm by various
means. When one of the training examples is drawn, the ex-
act sound model is reproduced, but when a picture outside
the training set is drawn the result is not a-priory known,
but determined by the neural network’s interpolation. Of
course, if we draw a realistic image of a real object not in
the training set, the resulting sound model will not be re-



Figure 4: Convergence graphs of two neural nets we tested. Each has 256 inputs. The first, with 128 hidden
shows convergence at under 200 iterations. The second, with 32 hidden nodes, shows convergence a little
later, but is still acceptable at the 200-iteration mark.

alistic, as the modes will depend on the internal structure
and other material properties not contained in an image.
However, the interpolated models are musically rich and in-
teresting, drawing on features of the objects in the training
set.

Our implementation is in an early stage of development
and there are several issues which we will address in the
near future. First we will extend the training set to include
more images to allow the neural net to extract meaningful
features. Many similar drawings of the same object should
be included in the training set, which can probably achieved
by adding noise to the input set. It would be interesting
to verify if translation and rotation invariance can easily
be learned by including translated and rotated examples in
the training set. Next we will incorporate a webcam into
the current implementation as an input device, which will
provide a very interesting live controller. We are also very
interested in applying the controller to live performance, or
as a base of an interactive acoustic installation.
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