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Abstract

In the past two decades, regularization methods based on the ¢; norm,
including sparse wavelet representations and total variation, have become im-
mensely popular. So much so, that we were led to consider the question whether
f1-based techniques ought to altogether replace the simpler, faster and better
known fs-based alternatives as the default approach to regularization tech-
niques.

The occasionally tremendous advances of ¢1-based techniques are not in
doubt. However, such techniques also have their limitations. This article ex-
plores advantages and disadvantages compared to ¢s-based techniques using
several practical case studies. Taking into account the considerable added hard-
ship in calculating solutions of the resulting computational problems, ¢;-based
techniques must offer substantial advantages to be worthwhile. In this light
our results suggest that in many applications, though not all, £2-based recovery
may still be preferred.

1 Introduction

[ll-posed problems typically require some regularization in order to compute a credible
approximate solution in a stable, well-defined manner. In this article we consider such
problems where the objective is to recover a function u(x), with x € Q c IR? (typically
d =2 or d = 3), from observed and discrete data b. Given is a forward operator, F'(u),
which predicts data for any suitable function u, and the challenge is to find u such
that the predicted data match the observed data to within a reasonable tolerance.
It is convenient for our discussion at this point to consider a linear forward oper-
ator, with u discretized on some mesh in € and reshaped as a vector of unknowns u,

*Department of Computer Science, University of British Columbia, Vancouver, Canada
kvdoel/ascher/haber@cs.ubc.ca . This work was supported in part by NSERC Discovery Grant
84306.



and with the observed and predicted data likewise written as b and F' = Ju, respec-
tively. Here J is an m X n sensitivity matrix, m < n, which often has a nontrivial
null space. Then we write down the Tikhonov-type regularized problem [60, 25, 61]

1
m3n§||Ju—b||§+ﬁR(U), (1)

where || - ||, denotes the usual vector ¢, norm, § > 0 is a parameter, and R is a
regularization operator. We focus on the following possibilities for R:

1. Consider

R(u) = }Juvvun;;, 2)

for the choices p = 1 (referred to as L1) or p = 2 (referred to as L2). Here
W is an n x n weight matrix, e.g., some wavelet or curvelet transform, or just
the identity [33, 24, 10]. For notational purposes we stipulate that W is not a
discretized gradient operator.!

2. Recalling that u represents a discretization of a function u(x) on €, choose
R(u) to be an appropriate discretization of

Rw) = [ VP ®)
pJa

again considering the cases p = 2 or p = 1. The case p = 2 leads to a discretiza-

tion of the Laplacian operator on {2 when considering necessary conditions for

the minimization (1): denote this by L2G. The case p = 1 leads to total varia-

tion [53, 51]: denote this by L1G.?

For many years the almost automatic choices of regularization in (2) and (3)
have been based on the f3-norm, i.e., p = 2. This yields a straightforward linear
least squares problem that can be effectively solved even when the problem is very
large (see, e.g., [55, 32]). Large computational problems are manageable even if F
is nonlinear in u and R is more complex but still /o-based (see, e.g., [29, 16, 17]).
Furthermore, the />-based regularization enjoys a favorable statistical interpretation
for models with a prior that is normally distributed [58, 8, 61, 41].

L Of course, wavelet function bases do approximate derivatives, too. For instance, our distinction
as such is particularly blurred by tight frame wavelets [7]. And yet, the distinction of L1 from L1G
should be intuitively clear. Note also that one can always transform L1 and L2 by a change of
variables into a form where W becomes the identity. However, we retain our notational redundancy
for convenience.

2 Note that the gradient magnitude |Vu| is the £3 norm of Vu. Thus, the L1G expression is one
of a discrete £1; norm only if d = 1. Also, a further regularization is required when using L1G upon
considering necessary conditions for (1); see, e.g., [1].



In the past two decades, however, regularization methods based on the ¢;-norm
(i.e., p = 1 in (2) and (3)) have become immensely popular; see, e.g., the books
[51, 46, 24]. In fact, we have been led to consider the idea that ¢;-based techniques
ought to altogether replace the simpler, faster and better known ¢s-based alternatives.
There are two essential motivations for this exciting trend.

e It is natural to choose for the regularization term a penalty function as in (3)
thus expressing the a priori information that u(x) ought to be smooth. But if
u(x) has jump discontinuities then using L2G essentially smears out such dis-
continuities because the Dirac §-function is not square integrable. On the other
hand the J-function is integrable, and thus using L1G better accommodates
jump discontinuities.

e Whether the term R is aimed at penalizing the magnitude of the gradient or
the solution itself, the ¢;-based regularization tends to produce sparse approx-
imations. In the L1G context this is expressed in the observation that the
reconstruction tends toward being piecewise constant, so the gradient is mostly
zero and thus sparse. In the L1 wavelet (or DCT) approximation context, where
Wu in (2) corresponds to coefficients of different wavelet (or cosine) basis func-
tions, a compressed approximation involving only a few basis functions often
results (unlike the case when using p = 2).

The rather fundamental importance of the above two reasons for using p = 1
is not in doubt. Among many other researchers we have ourselves contributed to
this volume of work [1, 30, 36]. We have found that for well-conditioned problems
with sufficient high quality data,® ¢;-based regularization can, in many cases, “deliver
on its promise”. However, for problems with poor data, or ill-conditioned problems
typically resulting from discretizations of highly ill-posed problems, we have found
that this is often not the case. To demonstrate and motivate the ensuing discussion,
let us consider the following example.

Example 1 Image Deblurring

Let J be a discretization of a known image blurring operator and u an image
reshaped into a vector. Our goal is to recover the clean image given noisy blurred
data. For the following numerical experiments we have used three codes: (i) Restore-
Tools [33], which employs an L2-type recovery strategy (viz. p = 2 and W = I in
(2)); (i) the GPSR package [26], which employs a wavelet L1 recovery algorithm;
and (ii1) a straightforward total variation (L1G) code. The above two packages, in
our opinion, are both excellent representations of good software for the problems they
aim to solve. However, the L2 code requires, comparatively speaking, only a small

3 We further explain in Section 3 what we mean by the intuitive terms “high quality” vs “poor”
data.



fraction of computational time to terminate successfully, hence it is to be preferred
unless the L1 reconstructions are demonstrably better.

The “true image”, or ground truth, s a 128 x 128 MRI image from MATLAB’s
collection. The blurring kernel is e~ ¥I3/27 with o = 0.01 and the blurred data is
further corrupted by 1% white noise. In all three methods, the data is fit to an accuracy
of 1% by tuning the reqularization parameter [ (see, e.qg., [61]). The results are
presented in Figure 1.
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Figure 1: The ground truth image (a) is blurred and corrupted by noise to create the
data (b). Recovered solutions obtained for this data by RestoreTools (L2), GPSR
(L1) and total variation (L1G) are displayed in (c-e), respectively.

It 1s apparent that, at least for this problem instance, the {1-based reconstructions
do not yield more pleasing results than the simple ly-based one. The L1G image is
typically blocky, and in the present context may be considered the worst of the three:
indeed, sparsity of the surface gradient is not a good regularization objective here. The
first two recoveries are more comparable in terms of quality. In fact, it may be argued
that the L2 result is altogether better than the {1-based ones.

Image deblurring is a favorite application in the literature for discussing and com-
paring both L1 and L1G techniques. Indeed, in many such examples ¢;-based reg-
ularization is to be preferred (see, e.g., [24, 11, 36]). However, Example 1 is by no
means esoteric. Furthermore, similar comparative observations arise when working on
certain nonlinear ill-posed problems such as electrical impedance tomography (EIT)
and direct current (DC) resistivity [1]; we return to this in Section 4.

The goals of this paper are therefore to explore, bearing in mind the occasionally
impressive advances of ¢i-based regularization techniques, also some of their limi-
tations. Taking into account the often considerable added hardship in calculating
solutions of the resulting computational problems, ¢;-based techniques must offer
substantial advantages to be worthwhile. In this light our results suggest that in
many applications, f-based recovery may be preferred. To this end we provide the
following cautionary notes:

1. Only the left term in the objective function of (1) is really mandated by the
stated data fitting problem. The choice of regularization is discretionary: dif-
ferent choices may generally yield different solutions that as such must all be



considered acceptable. The further specification of regularization reflects a prior
which depends on additional knowledge that may or may not be truly available.

2. It is not true that one must always seek a sparse approximate solution, especially
if an appropriate basis to span the solution is not known.

3. Codes such as those reported in [26, 3, 42, 4], which perform well when applied
in the context of using wavelets for denoising or deblurring, may occasionally
perform relatively poorly when applied in a wider context.

4. In our experience, if the data is not of sufficiently high quality, in the sense that
there is too much noise, then ¢;-based methods may occasionally perform worse
than the corresponding />-based methods.

5. If the data is not of sufficiently high quality, in the sense that it is too sparse
or rare, then ¢;-based methods may occasionally perform worse than the corre-
sponding />-based methods.

6. If the computational problem is highly ill-conditioned then ¢;-based methods
may occasionally perform worse than the corresponding fs-based methods.

In this paper we explore examples, or case studies, which demonstrate the claims
above and explain when /3-based methods merit prime consideration. Some analysis
is also provided. We group our discussion into two classes: problems with poor data,
considered in Section 3, and highly ill-conditioned problems, considered in Section 4.
The latter section is far longer and more involved than the others, and Theorem 1, as
well as the analysis in Section 4.1, are new. Before these, Section 2 provides a quick
review of /1-based regularization. We review the theory and the requisite assumptions
necessary for /1-based recovery to perform well.

Finally, we summarize the paper in Section 5.

2 [(;-based regularization

Several books, e.g., [56, 51, 11, 46, 24|, contain descriptions of ¢;-based regularization
methods in the context mentioned earlier, and it is not our intention to reproduce
them here. We only touch upon a few items. For early efforts in geophysics and data
assimilation, see [14, 59]. For advanced uses of such methods in machine learning,
see, e.g., [49, 47].

In the context of a discrete cosine or a wavelet-type transform, the problem (1)
may be viewed as a noisy version of the problem

min  R(u), (4a)

u

st. Ju=b, (4b)



where J has a full row rank m < n. Note that this can be a well-conditioned problem
for both choices of p in (2). For L1 (i.e., p = 1 in (2)) problem (4) can be cast as
a linear programming problem, and linear programming theory already guarantees
that there is an optimal basic feasible solution which is m-sparse (i.e., with only at
most m non-zero components) [62, 50]. In contrast, when using L2, all components
of the optimal u are typically non-zero.

This has been well-known since at least the 1960s. Moreover, though, since the
above transforms utilize elaborate basis functions it is reasonable to expect that much
fewer than m basis functions may suffice, corresponding to a much sparser solution.
The discovery [13, 22, 20] that using L1 often yields such a sparse solution, effectively
solving a very hard combinatorial problem, is much newer and constitutes a major
breakthrough.

However, it is not always the case that the solution of the constrained optimization
problem using the ¢; norm yields a sparse solution. Furthermore, for (1) in general it
does not automatically follow that if such a sparse solution exists it is an appropriate
estimate of the true solution, see [19] and Section 4.1.

Much effort has been devoted to the question, under what conditions the ¢; so-
lution of (4) produces the sparsest possible solution of (4b), referred to as the ¢y
solution. Of course, a more practical goal would probably be to seek a “sufficiently
sparse” solution, but the quest for optimum in this regard sheds light on what is re-
quired more generally. The restricted isometry property (RIP) [9] and the null space
property of [21, 15] both provide sufficient conditions, whereas the y-condition of [40]
is both necessary and sufficient for obtaining the sparsest solution by L1.

These conditions are of great value for understanding the design of compressed
sensing methods. Unfortunately, though, for realistic instances of the matrix J they
are generally intractable (NP-hard) to verify numerically. Moreover, in Section 4.1
we show that such conditions are violated for a specific case of the inverse potential
problem, when attempting to recover a pair of point charges by ¢;-based methods.

The vector norm function ||-||, is well-known to be convex only when p > 1. Thus,
/1 is marginally convex. Even more sparsity-inducing is the use of a nonconvex norm
with 0 < p < 1 [44, 54, 12]. But there is a price to pay for lack of convexity, in terms of
both poorer theory and the necessity of convergent algorithms which typically apply
a continuation (homotopy) procedure starting from a convex £,-norm.

Several famous codes cited earlier for solving (4) use methods that are based on
gradient projection with acceleration (see for instance the extended Chapter 6 of [5]
and references therein). The advantage of these methods is that they extend di-
rectly to problems with non-smooth constraints and require the objective function
gradient to be only Lipschitz continuous. However, bear in mind that for solving
simple unconstrained convex quadratic problems such methods boil down to acceler-
ated gradient descent without preconditioning, generally thought to be unforgivably
slow. These methods seem to work well for compressed sensing problems because the



corresponding problems (4) are well conditioned in an appropriate sense. Unfortu-
nately, other applications involving, for instance, PDE-constrained optimization (as
in Section 4), are highly ill-conditioned and therefore, similar numerical optimization
methods should not be expected to be robust and efficient in the latter context.

Total variation (L1G) has been discovered and peaked earlier than sparse wavelet
basis reconstruction and compressed sensing. The books [61, 51, 11] and many papers
develop both theory and algorithms using this approach. In practice, some regular-
ization such as a Huber switching function [56] is often used, and this really gives
a mix of ¢; with ¢5 elements while still retaining the L1G spirit [1]. See also [6] for
another approach to round excessive L1G sharpness. Moreover, one popular iterative
scheme to carry out the resulting algorithm is lagged diffusivity, which is a special
case of iteratively reweighted least squares (IRLS) [61, 1].

Unlike the case for wavelet-type solutions, where a sparse representation is sought
for the same high-quality surface or image approximation, here the regularization is
applied directly to the surface variables to be recovered. Along with the advantage
in directly penalizing piecewise smoothness, the tendency of the L1G regularization
to give sparse gradients, translating into a “blocky image”, is not always what one
necessarily wants (see, e.g., Figure 1(e)). L1G penalizes large jumps in the solution
more than small jumps, and this may introduce distortion in the reconstructed surface.
Various nonconvex alternatives to L1G are listed in [56], for instance, and these
occasionally yield sharper results for some applications. However, the nonconvex
nature of these regularizations again leads to both theoretical and practical additional
difficulties.

Our focus in this article is on exploring situations where use of the L1 or L1G
regularization (p = 1 in (2), (3)) may reasonably be compared to use of L2 or L2G
(p=21in (2), (3)). Therefore, employing any of the even sharper non-convex options
mentioned above is not under further consideration.

The above synopsis has been restricted to linear problems. There is very little
{1 theory for nonlinear problems. Moreover, it is easy to see that some of the basic
sparsity arguments fail for this case. Consider the problem

min |||y
u

st.  F(u)=b,

where the forward mapping function F' : R" — IR™ is smooth and has significant
curvature (see Figure 2). In such a case the problem need not even have m-sparse
solutions; indeed the optimal solution may have n non-zero entries. Thus, the justi-
fication of using L1 for nonlinear problems is far from obvious. On the other hand,
L1G remains of interest, because of its sharpening property. In Section 4.3 we explore
the use of L1G for a particular popular nonlinear case study.



Figure 2: When the constraint (solid red) is nonlinear, it does not need to intersect
the level set of ||ul|; (dashed black) at a vertex, so the solution is not necessarily
sparse.

3 Poor data

The perceived quality of a given data set depends on several factors, not simply on
some idealized noise level. One of these is the inverse problem operator. For instance,
in Example 1 the deblurring operation, which is essentially to improve contrast and
sharpness of the image, counters an image smoothing operation which aims to remove
noise. Thus, a noise level in the data which may otherwise be considered benign (say,
in a pure denoising application) can be an important obstruction here.

In the context of data fitting, it has been known for decades that ¢, data fitting is
more robust than ¢, against outliers in the data. See for instance [50] and also [45] for
a recent use in the context of 3D graphics. However, such a comparative statement
does not necessarily hold true for other types of noise such as white noise.

In general, bearing in mind the additional complications in carrying out ¢;-based
regularization, the data must be of sufficiently high quality to allow its favourable
properties (when relevant) to be expressed. A common situation yielding lack of
sufficiently good data is when the data is relatively rare, being given only at relatively
few locations in €. Let us next discuss a simple such example where the data locations
are rare (or sparse) in the domain of definition.

Example 2 Rare data reconstruction of piecewise smooth functions

Consider the recovery of a (real) signal u*(t) on [0,1] from m noisy samples
u; =~ u(t;), and assume we know that u* is piecewise smooth but may have jump dis-
continuities. We discretize the interval [0, 1] with a uniform grid of n = 512 points,
and use in a gwen experiment a subset of m <K n samples taken at random points t;



from this grid. The integral appearing in (3) is discretized using a piecewise linear
function u(t) on all n grid points. Thus, the recovery problem is formulated as in (1),
with J being the m X n matrix consisting of m columns forming an identity matrix
interspersed with n — m zero columns. In the limit case of no noise the formulation
(4) yields interpolation through the data points (t;,u;) of the sample.

We compare L2G and L1G reqularizations. It is easy to verify that in the L2G case
these data points are connected by straight lines, whereas with L1G (total variation)
reqularization the behavior is indeterminate, only restricting u to be monotone.
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Figure 3: Reconstructions of a piecewise smooth function from a few noisy samples:
using L2G and L1G for m=9 data pairs, with Sr26=.04, 8516=.08.
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Figure 4: Reconstructions of a piecewise smooth function from a few noisy samples:
using L2G and L1G for m=28 data pairs.

Figures 3 and 4 depict reconstruction results for m =9 and m = 28 samples. The
ground truth signal u*(t) contains two jumps, and we added 5% Gaussian noise to the
selected values to form the corresponding data sets.
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Figure 3 shows the result for 9 samples, with the reqularization parameters tuned by
the discrepancy principle to obtain a data misfit of 5+0.1%. There is little difference
between the L1G and L2G reconstructions.

The reconstruction in Figure /(a) using 28 samples starts to show the advantages
of L1G. Because the data contains two samples across the right discontinuity, the
reqularization parameter Brag now had to be decreased to Brag = .002 in order to
obtain the desired misfit of roughly 5%. As a result the L2G reconstruction exhibits
considerable oscillation in the flat sections, although note that the second jump is
reproduced as well as by the L1G method. In Figure /(b) we increased Brac until the
flat sections became reasonably smooth according to the “eyeball norm”. Observe that
the oscillation has disappeared, but the second jump is now completely blurred as well.

Example 2 illustrates that L1G regularization performs well when there is enough
quality data to require the reconstructed model to have discontinuities. But when the
data is “too sparse”, L2G regularization performs as well as L1G even in the presence
of discontinuities in the underlying ground truth function. This lesson seems perhaps
obvious in hindsight. However, it extends to more complex situations where the
insight is no longer so obvious. For instance, the problems considered in Section 4
have data specified only at the boundary of a given physical domain €2, which is a
lower-dimensional manifold; several examples can be found in the literature where
some L1G variant is applied to such problems. For another instance, consider a point
cloud in 3D, obtained as a set of somewhat noisy and not very dense 3D laser scan
measurements of a body with edges, such as a desk corner. In order to obtain a
good surface reconstruction we need at each point the normal to the surface that the
(cleaned) point cloud represents [38]. Since the curvature across an edge is infinite
the data can be effectively very sparse there, and indeed a global ¢;-reconstruction
approach [2] might not work well then. See Figure 10 in [39] for such an example.
Poor data are often encountered in ocean and atmospheric data assimilation, as well
as in other time-dependent geophysical applications [27, 23].

4 Large, highly ill-conditioned problems

In this section we consider applying ¢;-based techniques to large, highly ill-conditioned
problems such as typically arise in applications involving PDE-constrained optimiza-
tion. Using first an example we show in §4.1 that L1 techniques may not only be
expensive to carry out but also have difficulty in producing solutions which are as
sparse as a given ground truth. In §4.2 we then supply some analytical evidence
supporting this observation. Finally, in §4.3 we show by another example that while
L1G is not nearly as severely afflicted as L1, its advantage over L2G in recovering
surface discontinuities requires favourable conditions to shine through.
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4.1 Inverse potential problem

In the inverse potential problem one seeks to recover an electrical source distribution
in a given domain €2 from measurements of the potential on the domain’s boundary.
This problem arises in EEG source modeling [48] and in electromyography [18, 19].
In [19] the sought source is a combination of discrete tripoles corresponding to muscle
fibers, and as such invites a sparse reconstruction. However, in 3D the computational
problem using L1 indeed became much too large and difficult to work with, and
our eventual success in solving the research problem stated in [19] followed a further
realization that, given the specific goals of those computations, the sparse view was
not anyway the most effective. This has still left open the question of what an L1
reconstruction can do for such a problem (regardless of cost), a question that we now
proceed to explore in a more manageable 2D context with 2 being the unit square.
The forward model

—Av=u(x), xe€, (5)

with Neumann boundary conditions on v predicts the potential v for given electrical
source u. The total charge must be zero due to these boundary conditions. Note that
v(x) is only determined up to an overall additive constant, reflecting the physical
principle that only a potential difference is physically meaningful.

The inverse problem of finding v from values of v on the boundary does not
have a unique solution, even under idealized conditions [35]. The best one can do
is construct an “equivalent source” u that explains the data. Such a reconstruction
gives incomplete but still useful information about the actual source. Hence the role
of regularization is to provide additional information leading to a distribution u that
conforms to prior expectations, a rather fundamental difference from sparse signal
reconstruction. Denoting the discretized Poisson operator of (5) by A and the data
projection operator by @ (see [19] for details), we obtain a problem in the form (1)
with

J=QA™". (6)
Example 3 Inverse Potential Problem

In this numerical experiment the support of the source u is restricted to the offset
inner square (assumed known in the reconstruction) as depicted in Figures 5-7. The
potential is measured on the boundary, taking the average boundary potential as the
ground level, i.e., we subtract the average boundary potential from each datum. This
s necessary as only potential differences are measurable. Figures 5-7 depict results
for three different source distributions in the region. In each case, synthetic data is
computed on a 64* grid, to which we add 1% Gaussian noise. The reconstruction is
done with our various reqularizations (3) and (2) on a 32% grid. The regularization
constant (5 is tuned to obtain a resulting misfit of 1 +0.1% (see, e.g., [61]).
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Figure 5: Reconstructions of a piecewise constant charge distribution from boundary
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Figure 6: Reconstructions of a smoothed-step charge distribution from boundary
data.

Figures 5 and 6 serve as an appetizer. We consider, respectively, piecewise con-
stant and smoothed-step dipole distributions. Observe that the L1G reconstruction
results in a well-defined interface between the positively and negatively charged re-
gions, whereas the L2G reconstruction is smooth, irrespective of the true model. As
such, the use of L1G s especially recommended if we know a priori that u is piecewise
smooth. However, it is not possible to determine from the reconstructions whether u
has a jump or not: notice the similarity between Figures 5(b) and 6(b) and that
between Figures 5(c) and 6(c).

Next, we explore the main theme of this section by considering a point charge pair.
The true model (ground truth) depicted in Figure 7(a) is now very sparse.

The results shown in Figure 7 are in a similar vein as those in Figures 5 and 6.
The dipole structure is apparent from the L2G and L1G reconstructions, but not much
more is. The L1G reconstruction hints at a dipole pair but may mislead one to infer
an incorrect orientation.

For this last source distribution a sparse reconstruction seems natural, and one
such, obtained using an L1 reqularization, is depicted in Figure 8(b). The L2 recon-
struction is depicted in Figure 8(a) for comparison. We see that the L1 reconstruction
18 somewhat sparse, but all the reconstructed sources are on the boundary of the sup-
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Figure 7: Reconstructions of a point charge pair from boundary data using gradient
regularization.
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Figure 8: Reconstructions of a point charge pair from boundary data using regular-
izations (2).

port of u(x), and the L1 solution is not as sparse as the true model.

The reason for the observed source distribution is that sources near the detector
affect the data more and are therefore favoured [31]. This effect can be reduced by a
location dependent re-weighting of the reqularization function as suggested in [28, 3],
which amounts to normalizing the columns of J to unit 2-norm. Letting

a; = (YU Ty = dyla; = ag,

i=1

we can write Ju = b as Ju = b and apply the L1 regularization to u. (Note
though that computing a; for large scale problems may not be practical.) The resulting
reconstruction is depicted in Figure 8(c). The sparsity has improved a little, but we
are still far from the ¢y solution.

For this example, since J has normalized columns, the famous RIP condition
defined and analyzed in [9] applies. This condition requires that there be a § < v/2—1
such that for all 4-sparse u we have

(1= a)[all; < [[Jull; < (1 +0)[lals. (7)
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However, here it can be shown to be violated on physical grounds. Let u be a 4-sparse
source, i.e., non-zero only for indices i in a set 7 with |7 | = 4, and further let it have
values £1, so

lal3 = af > 4min(a}) > 0.
€T

(The value a; is just the 2-norm of the boundary potential when a unit source is
placed at location i.) Note that ||Ju||3 is the £, norm of the boundary potential. By
placing the positive and negative charges very close together, so that they almost
cancel each other, we can make the boundary potential and thereby ||.Jul|3 arbitrary
small, and thus 0 becomes arbitrarily close to 1. Hence the RIP condition is violated.
Note that this does not prove that the sparsest solution cannot be obtained, as the
RIP is a sufficient but not necessary condition.

The necessary and sufficient y-condition of [40] for obtaining the ¢, solution from
the ¢; solution relies on properties of the solution y to the equation

(JTy)i = 2, (8)

for selected indices i such that z; # 0. In our case, to determine if it is possible to
recover a 2-sparse source, the n-vector z should be 2-sparse with entries 1, so (8) has
just two equations. Further, JTy = A71QTy, and we can interpret y as describing
electrical sources on the boundary only, such that the generated potential equals
1 at point p; and —1 at point ps. These correspond to the location of the point
charges described by z. The ~v-condition then implies that we can find a y such that
the potential JTy is between —1 and 1 everywhere else. Unfortunately, however, on
physical grounds we can see that this is not possible. To see this note that if we
place p; and p» very close together then a very large electrical field will exist between
the points, which must be caused by very large boundary sources, which in turn will
generate close to those sources an even larger (> 1) field. Analytically we observe
that in the continuum limit, since z is a harmonic function it must take its extreme
values on the boundary. Since it takes on values £1 inside, it must take on larger
values on the boundary, and hence the y-condition is violated.

4.2 The effect of ill-conditioning on L1 regularization

In this subsection we consider the regularized L1 problem
.1
min > .7u ~ blj3 + 8 u,, )

and show, for a special choice of W which in a sense favours sparsity, that in the highly
ill-conditioned case and in the presence of noise the correct sparsity of a ground truth
model can be recovered only if the singular values of J and the sparsity structure
combine in a beneficial manner. This helps explain the negative results of Example 3.
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Let the singular value decomposition (SVD) of the m x n matrix J be given by

J=UxV",
where U and V' are orthogonal matrices and ¥ = diag {01, ...,0,} is m x n with the
singular values ordered so that o, > 09 > .-+ > 0,,. Further, consider a true model

u* such that z* = V7 u* satisfies

1 ieT
* , 1
“ {0 i¢T (10)

The emphasis in (10) is on the nature of T, i.e., the sparsity: setting the nonzero
values to 1 is just for convenience. For notational simplicity let us also assume, with-
out loss of generality, that U = I, the identity. Then it also makes sense to consider
the case where 2z = 0, ¢ > m. Suppose further that the data b is contaminated by
Gaussian noise € with mean 0 and covariance p?I. We have

b=Yz"+e
Thus, fori € T, zf = (b; — ¢;)/o; = 1.

Turning to approximate solutions and setting z = V7, recall first the truncated
SVD method, even though it has nothing to do with L1 methods. Thus, we set 5 =0
in (9), obtaining the least squares problem

1
min Yz — b3 (11)

and then, since the noise ¢; is obviously magnified by o; !, we set

- {bl/ s (12)
0 1>

where the effective rank r, » < m, is such that the error term depending on o, *
has tolerable size. Using this regularization method, it is obvious that a necessary
and sufficient condition for obtaining the same sparsity for z and z* is that 7 =
{1,2,...,r}. Indeed, no (very) small singular value index can be tolerated in the
set T of the given true model. In particular, we cannot stably obtain the sparse
approximate solution for just any true model. This requirement becomes rather
restrictive in the highly ill-conditioned case, where r < m.

Of course, the truncated SVD method not only does not have L1 magic, it also
requires carrying out the SVD, something we wish to avoid for the large problems
considered in this section. Let us now return to the Tikhonov-type method (9) with
B >0, and consider the special case of the L1 approach with W = V. This special
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case is in a sense the most favourable for the sparsity-inducing algorithm to work well.
This is so because the subspace defined by ¥z = b has the best possible orientation,
with respect to the faces of the polyhedron ||z]|; = constant, to cause intersection
at a face corresponding to the correct sparsity. See for example Figure 1 in [10] for
a sparsity spoiling orientation that cannot occur in our case. So, if we encounter
difficulties caused by ill-conditioning in this special case then they will persist upon
using a more general W.
Thus, we are considering the problem

!
min §||2Z—b||§+5|IZII1- (13)

Because (13) is just a sum of decoupled terms, we can solve it explicitly for each
component of z. The solution has z; = 0 where the gradient of the data fitting term
is bounded by the gradient of the regularization term, which gives

B> |Uz'(Uz‘Zf + Ez)|
Otherwise
2 = ((0y2] + &) £ /o) /o,

where the sign in front of 8 is not needed for our purposes.
In order for z to have the same sparsity as z* we therefore must have

5 < ‘UZ'(UZ‘ + 61)‘ for i € 7-,
g > |owe| foriéT.

Squaring these inequalities and replacing €2 by its expected value p? gives the condi-
tion

2 2 2 . 2/ 2 2
max p-o; < 3% < min o o; + p°).
¢T ! €T Z< ' )

Thus, the regularization parameter S must satisfy

poy < B <o_y/o? + p?, (14a)

with

04 = maxao,; Oo_ = minog;. 14b
T e " ieT (14b)

From (14) it follows that the correct sparsity pattern can be comfortably recovered
if o, < o_, ie. if all small singular values are not in 7 and all others are in 7, just
as for the truncated SVD method.



17

The case where L1 may offer potential advantage over truncated SVD is when
o4 > o_. In this case, (14a) yields the requirement

0.2

e — 15
P T (15)

We summarize this as follows:

Theorem 1 Consider the L1 regularization problem (9).

For the specific case defined above using (10), (13) and (14b), the true and recon-
structed models, z* and z, are expected to have the same zero structure only if either
o+ <o_ or (15) holds.

Unfortunately, if - < 1 and/or o, > o_ then the condition (15) may be too
restrictive in practice, possibly holding only for an unrealistically small noise level.

Further difficulties arise upon considering the usual practical process of selecting
the regularization parameter by the discrepancy principle (see, e.g., [61]), i.e., such
that the total misfit y satisfies

1
2

x 2 . 2
B= E;(Uz(zz Z) =€) ~=p.
Let us next compute the misfit for 3 satisfying (14a), assuming p is such that this is
possible, i.e., one of the conditions of Theorem 1 holds, and show that the misfit can
easily be much too large in the ill-conditioned case. Conversely, this means that if 5
was selected by the discrepancy principle, condition (14a) would be violated.
Let us choose 3 = po, i.e., the smallest possible 3 satisfying (14). Replacing €?

by its expected value the expected misfit squared becomes

= % Yo PP+ plot/or

i¢Ti<m ieT

The discrepancy principle requirement p ~ p can now be written as

1 2/ 2
— o /o; ~ 1.
|7-| ; +/ %
However if J is ill-conditioned the mean value of 63 /o7 over the set 7 could be very
large, implying that 5 (chosen to recover the correct sparsity) is too large to satisfy
the discrepancy principle. Conversely, the value of § selected by the discrepancy
principle will be too small to recover the correct sparsity of z*.

It is important to emphasize that we do not claim that L1 variants cannot work
for highly ill-conditioned problems. Rather, they may not necessarily work. It all
depends on how the sparsity of the true solution 7 and the singular values of J
relate. Moreover, we do not know of a method that does better than L1 in the
present sense. But then, our expectations regarding sparsity are lower for most other
methods in the first place.
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4.3 Nonlinear, highly ill-posed examples

In this subsection we study the DC resistivity problem on the unit square. The
forward problem for v, given by

— V- (o(u)(x)Vv) =q(x), x€Q, (16)

subject to Neumann boundary conditions, predicts the potential v for given external
source ¢ and conductivity o (parameterized in terms of w). The inverse problem is
to recover the conductivity o(u) from partial measurements of the potential v*, when
different current patterns ¢¢, i = 1,..., s, are injected into the region.

For experiment 4, ¢* consists of a positive point source on the left boundary and
an opposite point source on the right boundary, so

qi(x) =9 0 g,

x,p.;_‘L - X, PR

where piLL and piﬁ‘ are located on the left and right boundaries. Different data sets are
obtained by varying the positions piLR and piﬁ‘ of the two opposing point sources. We
place each at /s equidistant points including the corners, in all possible combinations,
which gives a total of s data sets for a perfect square. Voltage is measured on the
boundary, so the number of point in each data set is the number of boundary points of
the discretization mesh. See [17, 52] and references therein for details of the problem
setup such as the discretization of (16) and the solution of the resulting optimization
problem.

For this nonlinear inverse problem it is well-known that, unlike for the inverse
potential problem, increasing the number of data sets s allows a more accurate re-
covery of the resistivity 1/0. There is no reason to apply L1 here, and the purpose of
the following experiments is to determine, for a piecewise continuous surface recov-
ery, roughly at what point of such computational refinement the L1G regularization
becomes worthwhile.

Example 4 EIT and DC-resistivity

We have chosen to recover a grid approximation u of

u(x) = P~} (o(x)), (17a)
where the transfer function
1 1
P(t) = §<O'max — Opin)tanh(t) + E(Umam + Oumin) (17b)

enforces a priori known upper and lower bounds on the possible conductivity.

A synthetic conductivity model is used to compute the data b, which is calculated
on a grid that is twice as fine as the grid used for the reconstruction, and either 3%
or 1% Gaussian noise is added to it.
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(a) True model (b) s=4, L2G (c) s=4, L1G

(d) s=64, L2G (e) s=64, L1G

Figure 9: Conductivity reconstructions for different numbers s of data sets with noise
level 3%.

The ground truth model used to synthesize data consists of an object with con-
ductiwity o = 1 (black) placed in a background of conductivity o = 10 (white); see
Figure 9(a). In (17b) we set o = 1 and opmar = 10. The inverse problem involves
minimizing expressions of the form (1), (3). We compare p = 1 (total variation, or
L1G) with p =2 (L2G). A 128% uniform grid is used in these calculations.

Figure 9 shows the obtained reconstructions using s = 4 and s = 64 current
configurations at a noise level of 3%. The reqularization parameter 5 was tuned to
result in a misfit of 3+0.1%. Observe that in the case of rare data s = 4 there appears
to be no advantage to using the L1G regularization, whereas with 64 data sets the L1G
reconstruction is only marginally better than L2G.

(a) s=1024, L2G (b) s=1024, L1G

Figure 10: Reconstructions for a larger number of data sets s = 1024 and with the
noise level at only 1%. Here L1G clearly outshines L2G.
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Next, we use s = 1024 data sets at a noise level of 1%, with [ correspondingly
tuned. In order to accommodate so many right hand sides we employ the stochastic
adaptive algorithm described in [17]. The results are depicted in Figure 10. At this
increased model accuracy and resolution the result obtained using L1G is clearly better
than that obtained using L2G.

The situation described in Example 4 is not uncommon in practice. Often in
geophysical experiments results of the sort depicted in Figure 9(d,e) are of sufficient
quality and the lower noise level and larger number of experiments s required for
obtaining the result in Figure 10(b) is a sort of luxury that is not always attained.
Moreover, the forward problem considered in this section is often indicative of what
is observed numerically also for more complex problems such as low frequency elec-
tromagnetic and seismic data inversions. Finally, weighted L2G variants that are
routinely used in geophysical applications may further improve reconstructions with-
out resorting to f;-based regularization. In view of the occasionally significantly
higher cost of computing with L1G it cannot be automatically concluded that the
latter is worthwhile for this application, although it is a viable option that we always
entertain in the course of our research.

5 Summary

In this paper we have investigated the relative performance of /;-based regularization
techniques on several examples and case studies. We have shown cases where such
methods are worse than ¢5-based ones in the sense of costing more without delivering
more (Examples 1 and 4), and other cases where such methods produce better results
(see Figures 4b and 10). Further, we have shown cases where the ¢;-based results
appear to be more misleading than corresponding f»-based results (Example 3).

In Section 4.2 we have analyzed the effect of ill-conditioning on the ability of
an L1 method to correctly recover solution sparsity. Theorem 1 and the arguments
following it suggest severe limitations in case of extreme ill-conditioning such as arises
in certain inverse problems.

The results in Section 4.3 demonstrate how and when L1G becomes favoured as
the quality of the data improves. This in itself is intuitively expected, but less clear
is where the cross-over point occurs in realistic situations. Unfortunately, we had to
tweak the problem beyond what may be expected in many geophysical situations in
order to observe the L1G takeover.

Let us again stress our overall conviction that the swing of the pendulum in recent
years towards /;-based techniques is rather important and not merely refreshing. Our
purpose here, far from opposing this trend, is to simply suggest that this virtual
pendulum should not swing too far and away, to realms beyond reason. To this end
we note the following.
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In many situations, ¢;-based regularization is well-worth using. Such techniques
can provide exciting advances (e.g., in model reduction, computer graphics,
image processing and reconstruction of surfaces with discontinuities).

However, such techniques are not good for all problems, and it is dangerous
(and may consume many student-years) to apply them blindly.

In practice, we recommend to always consider first using ¢5-based regularization
techniques, because they are simpler, more easy to compute with, and do not
introduce nonlinearities or lower smoothness. Only upon deciding that these are
not sufficiently good for the given application, it is highly advisable to proceed
to examine ¢1-based alternatives (when this makes sense).

Last but not least, the possibility of combining ¢;- and ¢5-based techniques sug-
gests itself. We have already commented on using the Huber switching function
as well as IRLS techniques [56, 61, 33, 1, 30] for this purpose in the L1G-
L2G context, but these ideas are also very popular in the image processing and
computer vision literature in mixing the L1 and L2 approaches [34]. Another
popular approach is to employ an empirical Bayesian framework in order to
learn an appropriate mix [37, 57].
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