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Abstract— We describe a methodology to qualitatively and
quantitatively determine the activation level of individual mus-
cles by voltage measurements from an array of voltage sensors
on the skin surface. A physical finite element model for electro-
statics simulation is constructed from morphometric data and
numerical inversion techniques are used to determine muscle
activation patterns. Preliminary results from experiments with
simulated and human data are presented for activation recon-
structions of three muscles in the upper arm (biceps brachii,
bracialis, and triceps). This approach potentially offers a new
clinical tool to sensitively assess muscle function in patients
suffering from neurological disorders (e.g., spinal cord injury)
and could more accurately guide advances in the evaluation of
specific rehabilitation training regimens.

I. INTRODUCTION

The recovery of motor (muscle paresis) and movement

(trajectory) function in patients suffering from a disor-

der/damage within the peripheral and/or central nervous

system is one of the key goals of medical and rehabilitative

treatments, but accurate measurement of any change in

recovery is less than optimal (i.e., sensitive or accurate). The

conventional neurological examination of upper limb motor

deficit in patients suffering from a cervical spinal cord injury,

resulting in a tetraplegia, serves the purpose to: 1) diagnose

the extent of neurogenic muscle paralysis, and 2) monitor

changes over time after injury during rehabilitation. How-

ever, the underlying neurophysiological mechanisms cannot

be inferred by these clinical assessments and subsequently

clinical monitoring is restricted to describing a general

pattern of recovery [1].

The general aim of the methods described here is to

provide a detailed mapping of the activity of individual mus-

cles by using surface electromyography (sEMG) data from

multiple recording sites. This has direct applications for the

clinical monitoring of functional recovery and the evaluation

of specific rehabilitation programs for the improvement of

muscle function in patients suffering from spinal cord injury.

Advances in computer hardware and software now permit

the accurate simulation of electrical signal propagation in

complex three dimensional geometries such as human limbs.

The sources of electrical signals originating from muscle

fibers are relatively well understood; both simple and detailed

models for these are available, see [2]. For example in [3]

a multi-layer finite element model (FEM) of an idealized
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cylindrical limb was used to predict the sEMG signal de-

tected when a single source is present. We shall refer to this

type of model as a forward model.

Our goal is to invert this procedure and reconstruct current

sources, inside muscles of a limb, using simultaneous spatial

information from a surface-mounted grid of sEMG sensors.

The reconstructed sources are such that the measured sEMG

data will be explained by the model. A model that predicts

sources from data is called an inverse model. This inverse

problem, in its general form, is well known [4] to have

no unique solution, i.e., many different sources can fit the

data precisely. We therefore need to constrain the solution

to the inverse problem, and we do this by introducing a

priori information. We call the resulting system CMG, for

Computed Myography.

The only previous work [5], [6], [7], [8] on source local-

ization in sEMG that we are aware of uses an overdetermined

discrete source model, whereas we use an underdetermined

distributed source model. No significant results against which

to compare our work with appeared in these papers.

Clinical applications of high density sEMG were reviewed

in [9]. These applications focus mainly on measuring detailed

properties such as pulse shape of individual motor unit action

potentials utilizing multiple surface electrodes as an alterna-

tive to needle EMG, and not on a comprehensive mapping

of the current sources within a muscle (i.e., localization).

These methods require similar measurement techniques as

our method, i.e., a grid of simultaneous sensors, whereas

the data analysis has no overlap with our method. See for

example the HD-sEMG hardware described in [10].

Temporal information can be used to attempt to separate

the mixing of signals from multiple motor units (“crosstalk”)

in sEMG. With advanced processing methods such as “pre-

cision decomposition” [11] it is possible to separate up to 5

motor units. In many applications crosstalk elimination (or

reduction) is a central challenge, see for example [12], [11].

However for our purposes crosstalk is not a problem, but

rather part of the solution as it is precisely the mixing of

signals from different locations in individual voltage sensors

that enables the reconstruction of spatial information of the

various current sources in the muscles.

Activity source localization within the brain, from surface

electroencephalogram (EEG) data, has been an active area of

research for decades. A recent review of the state of the art

of EEG inverse modeling can be found in [13]. The sEMG

inverse problem has many similarities to the EEG inverse

problem and our method is closely related to the LORETA

system described in [13], [14].



II. INV ERSE MODELING

Our source localization methodology consists of the fol-

lowing steps, illustrated in Fig. 1. 1) Acquire a three dimen-

sional geometry model by the segmentation of MRI data.

2) Build a finite element model (FEM) simulator (a forward

model) for 3D volume conduction which can predict surface

voltages (e.g., data) from given current sources in the mus-

cles. The electrostatic potential u(x) satisfies the generalized

Poisson partial differential equation on the domain Ω

−∇(σ∇)u = I(x) in Ω, (1a)

∇nσu = 0 on ∂Ω1, (1b)

∇nσu = −Σu on ∂Ω2, (1c)

where n is the outward normal at the boundary, σ(x) is

the conductivity tensor, and the source I(x) is the trans-

membrane current density, which we assume is proportional

to the second spatial derivative along the muscle fiber

direction of the muscle fiber intracellular action potential

(IAP) V (x, t). We distinguish two types of boundaries, the

physical boundary ∂Ω1, and the cut boundary ∂Ω2 which

represents the boundary of our model (i.e., a cut through

the arm). The Σ term is an effective resistance modeling the

fl ow of currents in and out of our modeling domain at its

artificial boundaries. We discretize (1) with the COMSOL

Multiphysics FEM package and export the matrices of the

resulting linear system to MATLAB. 3) Using an inverse

model, compute (using MATLAB) the most likely current

sources that can explain measured data. Such an inversion

problem is typically ill-posed, which means that the solution

is not unique and/or the solution depends discontinuously on

the data. Regularization, incorporating a priori information,

is then employed to incorporate our prior knowledge of the

Fig. 1. Diagram of the CMG system. The thick arrows indicate sequential
processing steps, the thin arrows indicate data produced or used, rectangles
represent processes, and the slanted rectangles represent data. The prepro-
cessing is done once for a patient, and remains valid as long as no significant
change in morphology takes place.

electrical activities in the muscles which includes properties

such as smoothness and the regions of possible activation. We

then reconstruct the current sources m in the muscle fibers

by minimizing the least square data fitting error plus a gen-

eralized Tikhonov regularization penalty function [15] that

incorporates our a priori information. Denote our measured

data by the vector b. Define the linear operator Q which

produces a vector of measurements from the potential field

u(x). The measurements can be monopolar, differential, or

any other linear form. Note that Q also carries information

about the reference electrode, when used. We are looking

for a source that produces a potential field u(x) such that

Qu(x) ≈ b. Let us write I(x) = Dm(x) where m is the

source function to be reconstructed. The operator D can be

taken to be the identity, in which case m is just the current

density I , or we can choose (assuming the muscle fibers are

aligned in the z direction) D = ∂2/ ∂z2, in which case m is

the transmembrane potential V . More complicated operators

D based on known properties of the IAP are possible too.

The inverse problem is then formulated as a constrained

optimization problem

m in φ(u, m) :=
1

2
| | Qu− b | | 2 +

1

2

∫
Ω

m(x)Zm(x)dx,

(2)

su b je c t to :

−∇(σ∇)u = m in Ω,

∇nσu = 0 on ∂Ω1,

∇nσu = −Σu on ∂Ω2,

where the regularization operator Z is taken to be

Z = −β(∇(W∇) + µI) (3)

with constants β and µ to be determined. The diagonal

matrix W , normalized to tra c e (W ) = 3 , determines the

anisotropy of the smoothing operator which we allow to have

different values in the fiber direction and in the orthogonal

directions. These parameters have different (constant) values

on different anatomical regions. For example the “mass” µ
is chosen to be very large outside muscle domains to force

m to negligible values there. Inside a region of interest µ
balances the cost of smoothness versus magnitude and for

large values of µ we obtain the minimum norm solution.

We determine good values for these constants empirically by

reconstruction tests with known synthetic data and human

data where we know the answer. The value of the overall

scaling parameter β balances the relative weights given to

the least-squares difference between predicted and measured

data versus the a priori properties imposed on the solution.

Extensive literature (see for example [16] for a review) exists

on how to determine β in inverse problems. We use the

Morozov discrepancy principle [16], which means we use

a value of β so that the data is fitted to within measurement

noise.

In Fig. 2 we show the anatomical image we used to build

an upper arm model, a 3D geometry, and a tetrahedral mesh

created on the geometry. Comparing the predicted and the



measured data we then calculate the current sources in the

muscles, see Fig. 1.

The CMG system was implemented and tested on a

desktop computer with a dual core 3GHz processor and

4Gb of RAM. Processing of sEMG data to produce the

source estimations typically takes 15 minutes. The large

sparse linear system of equations arising from the inversion

algorithm was solved in MATLAB using a preconditioned

conjugate gradient method with a preconditioner similar to

the one described in [17]. The number of iterations required

is typically about 5 0.

III. RESULTS

In this section we describe results that have been obtained

with the current prototype of the CMG software we have

created.

We have constructed a model of the upper arm with

three muscles (biceps, brachialis, and triceps, see Fig. 2)

and tested the CMG system. Simulations with synthetic data

indicate that activation of each of the three muscles can be

derived accurately from sEMG data if a sufficiently dense

(we used 215 ) surface grid of monopolar sensors is used. The

experiments are summarized in Figs. 3, 4, and 5. In another

set of experiments we obtained bipolar (differential) sEMG

data from a healthy human subject during isometric fl exion

and extension using a ring of 12 bipolar sensors around the

upper arm. A Delsys B a g noliT M Desktop EMG Systems

was used for the measurements. Differential sensors were

employed since they are more widely used in sEMG than

monopolar sensors, so it is important to determine if they

can be used effectively with this method.

The sensors were placed approximately in the middle of

the upper arm in the configuration depicted in Fig. 2. The

subject was first asked to apply a constant force in the upper

direction with the elbow at an angle of about 9 00. This is

expected to activate the biceps and brachialis but not the

triceps. Data was taken at 1000H z for 15 s. Second, the

(a) Anatomical image (b) 3D geometry
constructed

(c) Mesh and 12

sensors

Fig. 2. A cross section of a generic upper arm (a) was used. The image
was segmented into different anatomical regions: brachialis, biceps, triceps,
fat and skin, and bone. The resulting 2D regions were then extruded in
the vertical direction to create a 3D geometry (b) and imported in the
finite element software COMSOL. The 3D geometry was then meshed with
tetrahedral elements, and the inverse model equations were discretized in
COMSOL and exported to MATLAB. We can then generate synthetic data,
for example at the locations shown in the cross-sectional view of the mesh
(c), placing known current sources in the muscles, or we can use measured
data. After obtaining the sEMG data (synthetic or human) we then solve
the inverse model equations in MATLAB and obtain reconstructed current
sources in the muscles. We then import the result back into COMSOL for
analysis and visualization.

(a) Synthetic source
model

(b) Reconstructed
model with surface
data (215 points)

(c) Reconstructed
model with ring data
(56 points)

Fig. 3. The CMG system was tested by creating simulated data. In the
example shown here, we placed 5, 000 current tripole sources (displayed in
(a)) at random locations in the biceps and brachialis. We visualize the region
of activation by displaying a surface that encloses 8 0% of the current sources
as measured by the integrated current power. We then compute synthetic
monopolar sEMG data on a grid of 215 points distributed over the surface,
and added 5% simulated Gaussian measurement noise. The current sources
are then reconstructed from the surface data, see (b). We then discarded all
surface data except for a ring of 56 points around the center of the arm and
performed the inversion with this limited data, shown in (c). An objective
measure of activation of the whole muscle is taken to be the current source
power density, which is the same (by construction) in both muscles in the
synthetic source model. The reconstructions give for the ratio (theoretically
1) of biceps and brachialis activations 0.9 53 using the surface grid of 215

data and 0.9 1 using the 56 points on a ring.

(a) Synthetic source
model

(b) Reconstructed
model with surface
data (215 points)

(c) Reconstructed
model with ring data
(56 points)

Fig. 4. Results as in Fig. 3 with artificial sources placed in the biceps
only. The reconstructions give for the ratio (theoretically 0) of brachialis
and biceps activations 0.03 using the surface grid of 215 data and 0.05

using the 56 points on a ring.

subject applied an isometric extension and data was taken

in the same fashion. This is expected to activate mainly the

triceps but possibly also the other two muscles which provide

stabilization during an isometric extension.

As we currently have no MRI data of our subject, we

used the generic arm muscle model from [18], scaled to

match the measured circumference (3 0c m ) of the subject’s

arm at the location of the electrodes. A random sample

of the middle 1 se cond of the data was chosen for the

reconstruction. No significant difference was observed by the

choice of sample. Besides the human data we also generated

corresponding synthetic data with 5 000 tripole sources. A

coarse mesh of 3 2, 6 07 elements was used for the data

inversion, whereas a finer mesh of 6 1, 4 5 2 elements was

employed to generate synthetic measurement data, so as to

avoid the so called “inverse crimes”. For the artificial source

modeling we use the simplest triangular model [2], with a

pulse length of 1 cm . We observed no difference in results

when the slightly more detailed Rosenfalck model [19] was

substituted. If so desired more realistic models for the IAP



(a) Synthetic source
model

(b) Reconstructed
model with surface
data (215 points)

(c) Reconstructed
model with ring data
(56 points)

Fig. 5. Results as in Fig. 3 and 4 with artificial sources placed in the
brachialis only. The reconstructions give for the ratio (theoretically 0) of
biceps and brachialis activations 0.11 using the surface grid of 215 data
and 0.54 using the 56 points on a ring. In the ring configuration, 3 5% of
the activity is erroneously attributed to the biceps instead of the brachialis,
which indicate this sensor configuration is not adequate. As the brachialis
is mostly covered by other muscles it is the hardest to identify.

(for example [2], [20]) could be employed, but since we use

our sources only to test the inversion method there is no need

for accuracy here. The sources were distributed over biceps

and brachialis for the first exercise, and over the triceps for

the second exercise. The results for the relative activations

of the muscles are depicted in Fig. 6.

D isc u ssion

We conclude that with this arrangement of bipolar sensors,

while the activities of individual muscles can still be discrim-

inated to some extent, significant “leaking” of reconstructed

activity into nearby inactive muscles results in a low qual-

ity of the reconstruction. Experiments with synthetic data

indicated that monopolar sensors will greatly improve the

quality of the reconstruction, which is also to be expected

on theoretical grounds. Another important conclusion we

draw is that the results from synthetic and human data are

consistent so we are confident that conclusions drawn from

experiments with synthetic data are reliable and carry over

to human data.

We found all reconstructions to be robust against uncer-

tainties in the detailed properties such as conductivities and

details of the geometry. Additional experiments (not reported

here) were performed with values of conductivities in the

reconstruction that differ by up to a factor of 2 from their

“true” values (as used by the forward model) which still gave

good reconstructions. This is important for practical purposes

as the conductivities are not known to great accuracy [3].

IV . CONCLUSIONS

Our new CMG technique has the potential to greatly

improve current practice in muscle function monitoring. Re-

sults from simulated experiments with synthetic data indicate

that a surface grid of monopolar sEMG sensors, similar to

configurations used in EEG, is to be preferred over the more

commonly used bi- or tripolar voltage sensors. The results

we obtained with human data using bipolar sensors are

consistent with the results obtained from simulated data, even

though the 3D arm model used for the analysis of human

data was just a generic model. This suggests that simulated

Fig. 6. Relative current source power densities in three muscles. Recon-
structions were performed using human sEMG data during fl exion (a) and
extension (b). We used a generic morphometric model of the arm, scaled
to match the circumference of the subject’s arm. The results from (a) look
plausible as the main activity is in the biceps and brachialis, as expected.
The result (b) from isometric extension of the triceps seems to indicate a
significant amount of coactivation of the biceps and brachialis, which is
also plausible, as it is difficult not to activate these muscles for stabilization
during the exercise. To check for consistency we generated synthetic data
and corresponding reconstructions by placing 5000 simulated tripole sources
in biceps and brachialis (a-s) and then just in the triceps (b-s). The synthetic
result (a-s) is very close to the real result (a), but the synthetic results (b-s)
which should show only activity in the triceps shows a significant amount
of spurious coactivation in the brachialis, though not as much as in the real
result (b). This is an indicator that this sensor configuration is inadequate
to distinguish individual muscles accurately. To verify this hypothesis we
computed synthetic data for a ring of 56 monopolar (b-m1) and for a surface
grid of 215 monopolar sensors (b-m2) and it can be seen that the erroneous
coactivation of the brachialis is no longer present.

experiments are reliable indicators for the performance of

the CMG system.

In the near future we plan to test the CMG system more

extensively with human data from monopolar sensors. We

will also acquire a more complete and patient specific 3D

upper arm model from a set of cross sectional MR images

at different elevations. The model used for our present results

is based on an image of a single slice and is symmetric in

the vertical axis.

To validate the results obtained from human data an

independent measure of muscle activations is necessary to

compare with the CMG predictions. Since we need the acti-

vations in the bulk of the muscles, a verification with multiple

single unit needle EMG recordings would be very intrusive.

Instead, we plan to use MRI to monitor exercise induced

signal changes which are primarily due to an increase or

decrease in the transverse relaxation time (T2) of tissue

water [21], [22].
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