
Notes on Mandelbrot set
(Draft)

February 14, 2018

Abstract

Math tricks for rendering the Mandelbrot set and other fractals. Most of
this stuff (but not everything) has been invented and/or discussed over the last
5 years on fractalforums.com/.org.

1 Basics

The Mandelbrot (M) set is generated by the iterations

f(z, c) = z2 + c (1a)

z0 = 0 (1b)

zn+1 = f(zn, c) = z2n + c (1c)

z′n+1 =
∂f

∂z
z′n +

∂f

∂c
= 2znz

′
n + 1 (1d)

where all symbols are complex numbers, unless otherwise indicated. zn(c) is the orbit
of c, and the orbits on a (usually rectangular) region of c values (on a pixel grid) are
used to make a picture. The derivative z′ = ∂z/∂c is not necessary to compute but
useful for coloring and other things. How to go from an orbit to a color is called
making a representation function m(c). There are many and only a few fundamental
ones will be described.

First of all, let’s give m a fixed value (say 0) on any interior point where the orbit
does not escape. If |zn| ever gets bigger than 2 the orbit will escape, and c is a point
in the exterior. The simplest representation function m is the iteration at which the
orbit escapes, |zn| > R for some radius R ≥ 2.

However, this m depends on R and is not smooth, and though we could just chose
R = 2 it turns out to be better (for some purposes) to choose R large, say 1000000.

As the following tricks work more generally, let’s consider a more general f(z, c)
where z is now just a 2-vector z = (x, y) and f(z, c) anything that satisfies |f(z, c)| ≈
|z|q for large |z| and some q > 1, and |.| is now the Euclidean vector norm (length).

1

2

Once the orbits starts diverging and |z| gets big, it will grow as

|zn| = aq
n

(2)

for some number a and the double logarithm (written as l(x) = log(log(x))) goes like

l(|zn|) = l(a) + n log(q) (3)

which is linear, increasing by log(q) every iteration.
If the orbit has just escaped at n = N + 1 we have

l(|zN |) < l(R) < l(|zN+1|) (4)

m = N + 1 (5)

with m the value of the “naive” representation function. To make a smooth m, using
(3), define the fractional iteration count N̂ , by solving l(|zN̂ |) = l(R), which gives

N̂ = (l(R)− l(a))/log(q) = (l(R)− l(|zN |))/log(q) +N. (6)

The constant l(R) does not matter and is even undesirable, so just define the contin-
uous iteration count as

m = N + 1− log(log |zN |)/ log(q). (7)

For large enough R this is a smoothly varying function everywhere.
From m we can derive another nice representation function, the distance estimate

d(c) which is approximately how far from the boundary c is. First define the Green’s
or potential function

G(c) = e−m(c) log(q) (8)

which is zero only on the boundary (where m → ∞) and undefined when the orbit
does not escape. The distance to the boundary of c is just the length of shortest v that
solves G(c+v) = 0. If we’re close, v is small and we can use the linear approximation

G(c+ v) = G(c) + v · ∇G(c) = 0 (9)

with ∇ the 2-d gradient, which has solution v of length

d = |v| = G/|∇G| = 1

|∇m| log(q)
=
|zN | log(|zN |)
|∇|zN ||

, (10)

which is the distance estimate. For holomorphic f(z, c) it simplifies to

d =
|zN | log(|zN |)
|z′N |

(11)

with z′N the (complex) derivative wrt c. The distance estimation looks best when z′

is obtained from the iterations, but it is also possible to just compute the orbit and
differentiate m numerically. This tends to require something like a 6X oversampling
to look good, whereas the analytic distance coloring is fine with just 2X oversampling.

For the M-set one can prove that the distance estimate is within a factor 2 (mul-
tiply or divide) of the true distance [8].

3

Renormalization

For non-escaping points, of particular interest are periodic points which are in the
center of a hyperbolic component (a mini body or attached bulb), and pre-periodic
points (Misiurewicz points) which become periodic after a number (the pre-period)
of iterations. For periodic points of period p we have

zp = 0 (12)

so z0, . . . , zp−1 is repeated over and over. For Misiurewicz points (pp, p) with pp > 0
the preperiod we have

zpp+p = zpp (13)

where pp is the smallest pp > 0 for which this holds.
Periodic points can be found using Newton’s method to solve zp(c) =0 if we know

p and using (1) for the derivative. Misiurewicz points require some more care to
ensure we find a strictly preperiodic point [9].

If we know p and cp for a periodic point (i.e., inside a hyperbolic component) we
can estimate its size relative to the main M-set body (needed to make a picture) by
the method of renormalization [20], which transforms p full iterations into 1 iteration
of scaled variables in a small region around cp.

Consider an orbit zn, zn+1, . . . zn+p, so zn = zn+p = 0. Next perturb this orbit by
taking c = cp+ b with |b| very small (a “ball”). The iteration moves this ball around,
until it returns at iteration p but with changed size. For the perturbed orbit Z we
write Z = z + w and we get

Zk = zk + wk (14a)

zk+1 = z2k + cp (14b)

wk+1 = w2
k + 2zkwk + b (14c)

z0 = 0 (14d)

w0 = 0. (14e)

As b is tiny (as small as necessary), so is wk (the deviation from the periodic orbit
under small shift in c) and the term w2

k can be neglected compared to 2zkwk, unless
zk = 0. We get the linearized form

wk+1 = 2zkwk + b when zk ̸= 0 (15a)

wk+1 = w2
k + b when zk = 0 (15b)

z0 = 0 (15c)

w0 = 0. (15d)

4

If we now iterate from n to n+ p we get

wn+1 = w2
n + b (16a)

wn+k = 2zn+k−1wn+k−1 + b (16b)

k = 2, . . . , p (16c)

The linear recursion (16b) can be solved explicitly [19] giving

wn+p = Λ(w2
n + βb) (17a)

where

λm =
m∏
k=1

(2zn+k) (17b)

Λ = λp−1 (17c)

β = 1 +

p−1∑
k=1

1

λk

. (17d)

We have Zn = wn and Zn+p = wn+p since zn = zn+p = 0, and writing b = c − cp we
get

Zn+p = Λ(Z2
n + β(c− cp)) (18)

which can be renormalized in terms of new variables

Ẑ = ΛZ (19a)

ĉ = βΛ2(c− cp) (19b)

Ẑ ← Ẑ2 + ĉ (19c)

which will give the usual zoomed out M-set shape when ĉ is inside the body or
bulbs, which means the actual c values c − cp should be in a similar shaped region
but shrunk by a scale/rotation factor 1

βΛ2 . The method generalized to more general

functions f(z, c), just replace 2zi where it occurs by ∂f/∂z (or a Jacobian matrix for
non-analytic f). See [10].

2 Complex differentiation

For a nice introduction to complex analysis see [1].
Functions f(z) can also be considered functions f(x, y) with z = x + iy, and

f(z) = u(x, y) + iv(x, y) with u, v, x, y real.
A function f(z) is called holomorphic or analytical if it satisfied the Cauchy-

Riemann conditions ux = vy and uy = −vx with subscripts indicating partial differ-
entiation. Loosely speaking it is analytical if f(z) has a formula involving only z but

5

not its complex conjugate z̄. Any function f(x, y) can be recast in the form f(z, z̄).
Analytic functions satisfy ∂f/∂z̄ = 0. We have the following conversions

∂

∂z
= (

∂

∂x
− i

∂

∂y
)/2 (20a)

∂

∂z̄
= (

∂

∂x
+ i

∂

∂y
)/2. (20b)

When dealing with analytical functions f we often have to compute derivatives of
absolute values of functions, which are functions from complex numbers to reals and
obviously not analytical. Some useful results derivable from the above are

∂|f |2

∂z
= f̄

∂f

∂z
(21a)

||∇|f ||| = |∂f
∂z
| (21b)

where f is holomorphic, |.| is the complex absolute value, ||.|| is the Euclidean 2-vector
norm, and ∇ is the gradient operator (vector of partial derivatives wrt x and y).

3 Rendering methods

To compute a representation function involves selecting a rectangular window in the
complex plane, fill it with a pixel grid of c values, and for each c iterate (1) up to some
maximum number of iterations. Implementing this using normal floating point (FP)
numbers (usually 64 bit double precision) works only if the pixel spacing is bigger
than the round off error, h > ϵ with ϵ the machine precision, about 2.10−16. This
roughly corresponds to a maximum magnification of about 1012 for a high resolution
10000× 10000 image.

For deeper zooms we can replace the usual FP numbers by “arbitrary precision”
numbers, implemented in software. This however results in a tremendous slowdown.

Recently [17] a different approach, called “perturbation theory (PT) and series
approximation (SA)”, was suggested and implemented, using variable splitting and
Taylor expansions. This method does not work directly, but needs some sophisticated
error correction methods, which has been developed by various people on the fractal
forum fractalforums.com and still continues on its successor, fractalforums.org.

3.1 Perturbation theory

Let c range over a small window (e.g., of size 10−1000) and pick one (reference) point
cr, for example the center though there are probably better selection methods. Now
split the variables occurring in (1) into large and small parts.

c = cr + b (22a)

zk = Xk + wk (22b)

6

where b and wk are small. In terms of the new variables we have

xk = round(Xk) (23a)

wk+1 = wk(wk + 2xk) + b (23b)

zk+1 = xk+1 + wk+1 (23c)

z′k+1 = 2(xk + wk)z
′
k + 1 (23d)

Xk+1 = X2
k + cr (23e)

X0 = 0 (23f)

w0 = 0 (23g)

z′0 = 0 (23h)

where X and cr are multiple precision (MP) variables, and all other variables are
FP, which may need to be extended to prevent under and overflow. This makes it a
bit slower than normal FP (about a factor 4), but not by as much as using MP. The
“round” operator converts from MP to FP.

This “splitting” method is common in numerical solutions of differential equations,
see for example [7].

3.2 Series approximation

The second ingredient, the SA, is based on the observation that since b is small, and
wn(b) (23b) is a degree 2n−1 polynomial in b, we should be able to discard some of
these higher power terms by truncating the polynomial to a lower order K. This is
not an optional refinement, as the saving in computation time is often two orders of
magnitude (factor 100). To avoid scaling issues it’s best to expand in b̂ = b/bmax with
bmax = max(|b|) So we approximate

wn(b) ≈
K∑
k=1

aknb̂
k (24a)

where the coefficients akn can be found by substitution (full derivation in Section 3.2.2)
in (23b) and collecting terms of the same order in b̂, resulting in [11]

k = 1, . . . , K (24b)

ak1 = bmaxδk1 (24c)

ak,n+1 = 2xnakn + bmaxδk1 +
k−1∑
j=1

ajnak−j,n (24d)

where δk1 is the Kronecker delta. All these variables are FP (possibly with extended
range if bmax is very small). Once K is chosen (not sure how) we have to figure
out up to which iteration M we can use it and compute wM from (24a), skipping

7

iterations 1, . . . ,M − 1 and continue with normal iterations (23b) after that. M
should be chosen to keep errors small, and a method to determine these is described
and discussed here [2].

Note that the minimum number of iterations in the image is an upper bound for
M as for n > M some points will diverge and will have no Taylor expansion.

3.2.1 Theoretical SA error analysis

Evaluating wM using (24a) introduces several errors which need to be controlled.
The calculation of the coefficients akn has rounding errors, truncating the full wM

polynomial has a truncation error, usually called the remainder, and evaluating (24a)
has rounding errors. The usual method to evaluate (24a) is through Horner’s method,
and a more accurate method is described in [16] which also reviews error analysis for
the Horner method.

For a Taylor expansion Pk(z) to order k of function f(z) (a polynomial in the case
at hand) around z = 0 we have (exactly)

f(z) = Pk(z) +Rk(z) (25a)

Pk(z) =
k∑

i=0

f (k)(0)

k!
zk (25b)

where there are several exact expressions for the remainder Rk:

Rk(z) =
f (k+1)(ξ)

(k + 1)!
zk+1, for some |ξ| < |z| (25c)

Rk(z) =
zk+1

2πi

∮
∂U

f(u)

uk+1(u− z)
du (25d)

where the integral is over the boundary of a region U that includes all values of z
we’re interested in.

(25d) allows us to compute a bound on Rk. In terms of the problem at hand (25d)
reads

Rk(b) =
bk+1

2πi

∮
∂U

wM(u)

uk+1(u− b)
du. (26)

Let’s assume we’re rendering a ball of radius r = max(b) around 0 (or around the
reference point in terms of the full variables). Let U be a ball of radius αr, α > 1.
An upper bound for the integrand is

| wM(u)

uk+1(u− b)
| ≤ maxU(|wM |)

(αr)k+1r
, (27a)

8

using |u− b| ≥ r. and r ≤ |b|. Path length is 2παr, and max(wM) = 4 if nothing has
escaped yet in U . so

Rk(b) ≤
maxU(|wM |)rk+1αr

(αr)k+1r
= max

U
(|wM |)/αk. (27b)

This proves that at least the Taylor expansion converges up to M where nothing has
escaped. Not sure if there is a practical use for this analysis.

3.2.2 Practical SA error analysis

Probably more promising is the ball method explained in [2], as this takes into account
the actual iterations for w. Ball method is explained in Section 4.1.

Here’s my derivation, which agrees with results from [2]. Some notational simpli-
fications: ∑

i

=
K∑
i=1

(28a)∑
ij−

=
∑

{i,j∈1,...,K|i+j≤K}

(28b)

∑
ij+

=
∑

{i,j∈1,...,K|i+j>K}

(28c)

Iteration indices omitted are n.

For an SA to order K, we write for the ball variable

[wn] =
∑
i

ainb̂
i + rnE (28d)

[wn+1] =
∑
i

ai,n+1b̂
i + rn+1E. (28e)

The following steps derive recursion relation for the ai(n) and rn.

[wn+1] = [wn]([wn] + 2Xn) + bmaxb̂ = (28f)

(
∑
i

aib̂
i + rE)(

∑
i

aib̂
i + rE + 2X) + bmaxb̂ = (28g)∑

ij

aiaj b̂
i+j +

∑
i

(2Xai + bmaxδi1)b̂
i + (r2 + 2r(

∑
i

aib̂
i +X))E = (28h)∑

ij−

aiaj b̂
i+j +

∑
i

(2Xai + bmaxδi1)b̂
i+ (28i)

+ (r2 + 2r(
∑
i

aib̂
i +X))E +

∑
ij+

aiaj b̂
i+j. (28j)

9

In (28i) we have only powers of b̂ up to K and we equate this with the first term of the
right hand side of (28e), which gives the SA coefficient recursion (24) after resolving
the i+ k ≤ K constraint. The term (28j) is a ball plus something we want to reduce,
so we replace that with a ball and equate that with the second term in (28e) and we
get

rn+1 = r2n + 2rn|
∑
i

ainb̂
i +Xn)|+ |

∑
ij+

ainajnb̂
i+j|. (28k)

In [2, 3] the recursion was in terms of Rn = rn/|b|K+1 (no connection to the R
in (25a)).

As (28k) depends on b it’s still not useful because if we’d had to evaluate it for
every b we’d be better off without the SA altogether. From the bound |b̂| ≤ 1 and
other inequalities we can obtain the pixel independent error bound as (slightly abusing
notation by redefining r)

rn = 0 if 2n−1 ≤ K (28l)

rn+1 = r2n + 2rn(
∑
i

|ain|+ |Xn)|) +
∑
ij+

|ainajn|. (28m)

3.2.3 SA error analysis in practice

Now that we know the truncation error (but have ignored rounding errors altogether)
the question is what to do with this. One option is to impose backward stability.
Error ∆w is related to error in ∆c through

∆w = w′∆c (29)

so a good criterion could be

∆wn/|w′
n| = rn/|w′

n| = ∆c < h (30)

with h the pixel radius, but |w′
n| depends on b and a pixel by pixel test negates the

purpose of the SA, to speed up things. Unfortunately |w′
n| (obtained simply from the

series of w) has no lower bound, so it’s unclear how to proceed. Current practice is
to set |w′| ≥ 1 which is valid except inside hyperbolic components.

If we set |w′| = 1 we are effectively directly working with the forward error rn,
which is not necessarily bad. The backwards error is not really the visible error, as
this is determined by the behaviour just before escaping, if the orbit escapes, or, if the
orbit does not escape and is stable, there is no direct visual interpretation of ∆c, and
any ∆c that does not move out of the orbit attractor is fine for rendering purposes.
(Unless you want to do interior coloring.) While this works, the SA should in principle
be applied to as close to the minimum iterations in the image as possible, and the

10

truncation error based method does not get as close as a more heuristic method based
on probes. Another problem is that truncation error is just one estimated error and
in practice the rounding error from evaluating the SA polynomial, assuming all series
coefficients to be accurate to machine precision, is larger by many orders of magnitude
than the truncation error, putting the justification of this method on shaky grounds.

A more heuristic method checks selected points for comparison with a full iteration
of the orbit using PT. As theoretical upper bounds on the error seem too conservative,
and there is probably no way to rigorously guarantee accuracy everywhere except by
brute force methods which negate the purpose of the SA, this is a reasonable approach.

As the polynomial has largest errors on the boundary, the four corner points of the
image are good candidates for probe points. For each probe point we also calculate
the PT orbit and compare at each SA iteration for accuracy, terminating when at
any probe we get ∆w/|w′| > h with h the pixel radius.

Occasionally this does not suffice and the SA is incorrect somewhere in the center.
As the error is potentially largest where |w′| is small, which happens near minibrots,
a good method is to compute the roots of the SA polynomial or its derivative and
use those as probe points, adding probes as you go along. If you find a root cr it will
have |w′| < 1, inside a component, and if used as-is will terminate the iteration very
quickly as the backward error will be very large. However the root cr is not on a pixel
in general, and it should be shifted to the nearest pixel. In images without visible
minibrots this is sufficient as now the derivate will be fairly large again. If there is a
minibrot in the image such a shift may still stay in the minbrot with small derivative.
As we want the probe to be just outside the mini we should shift it until |w′| ≈ 1.
This can be achieved by the shift

cr → cr + eiθ/w′′ (31)

with w′′ the second derivative obtained from the SA polynomial and θ an arbitrary
phase factor determining the direction of the shift. This method works well and allows
more iterations to be skipped than any other known method at present.

3.3 Glitch detection

The perturbation method sometimes works as-is, but usually some pixel regions (c
values) do not render correctly with the given reference orbit, and require a different
reference point. Obviously if the reference orbit escapes before the pixel we are
computing the calculation will fail. This can be avoided by ensuring cr has a non-
escaping orbit, which means finding an hyperbolic component in the given image,
which is not too difficult.

Harder is to automatically (i.e., without visual inspection) detect when (23b) is
going to fail. At first glance it seems this will happen when the FP number w gets
big enough that the addition of the b drops out (when |b| < ϵ|w|) but in practice
this is sometimes fine. The orbits of w in a neighborhood of cr + b can still stay

11

distinct. A problem will arise when they don’t, as then a whole region will “flatten
out”. This reasoning led to the Pauldelbrot glitch detector [4] (the errors are usually
called “glitches”).

Once b drops out, the iteration for w and w′ = ∂w
∂b

become

wk+1 = wk(wk + 2xk) (32a)

w′
k+1 = 2(xk + wk)w

′
k. (32b)

If w′ ever becomes zero, nearby orbits will merge, and this will happen if |xk + wk =
zk| = 0. So whenever the orbit zk becomes small we may have a problem. The
Pauldelbrot criterion for a glitch to occur is

|xk + wk|/|xk| < τ (33)

with the tolerance τ about 10−6− 10−3, depending on how complicated the image is.
The intuition is that the presence of a dip in z indicates the influence of a nearby mini
different from the reference mini, which explains the division by |xk|. The method
works well, but detects many “false glitches” (that had no problem), is not well
motivated theoretically, and requires an empirically determine tolerance parameter.

A different glitch detector was first proposed in [2], based on a rounding error
analysis of (23b), taking into account only the rounding error in the term wk + 2xk,
which is ϵmax(|wk|, 2|xk|). Here I will derive a more conservative form, taking more
errors into account. We set the relative error in xn and b to ϵ, and the relative error
in w to ϵr. If no SA is used, ϵr = ϵ, otherwise ϵr = rM/|wM | with M the last SA
computed w and error rM . (Injecting SA error in glitch detection has not been tried
out, in practice with SA the glitch methods to follow are tweaked by just increasing
ϵ by some factor, say 1000.

In (23b), replace x and b by x + ϵ|x| and b + ϵ|b| (the rounding error), and w by
w + αϵ|w| where we can think of ϵ (machine precision) as a ball with undetermined
phase, keeping only linear terms in ϵ. to get the error in w, ∆w. If no SA is used
α = 1, but if the error from the last SA iteration would be used for the error in w
α = rM

ϵ|wM | with M the number of iterations skipped by the SA.

wk+1 = wk(wk + 2xk) + b+∆wk+1 (34a)

∆wk+1 = (|wk|(α|wk + 2xk|+ α|wk|+ 2|xk|+ |b|)ϵ. (34b)

While it’s unclear what limits to put on the “forward error” ∆w, the “backward
error”, the change in c corresponding to the change in w has a clear interpretation:
it should be less than half the pixel distance (h). The relation between forward and
backward error is

∆wk+1 = w′
k+1∆b (35)

12

which gives the no-glitch condition

∆b = ∆wk+1/|w′
k+1| =

|wk|(α|wk + 2xk|+ α|wk|+ 2|xk|) + |b|
|2w′

k(wk + xk) + 1k|
ϵ < h (36)

or the equivalent glitch condition

|2w′
k(wk + xk) + 1k|

|wk|(α|wk + 2xk|+ α|wk|+ 2|xk|) + |b|
< ϵ/h. (37)

Strictly speaking, the term denoted 1k should be 0 if b has dropped out, and 1 if not,
but in practice it makes no difference if it’s kept or not.

This condition seems to work well, with fewer false positives, but particularly if
the SA is used it requires a manually set tolerance by replacing ϵ→ ϵ/τ with tolerance
τ about 1− 10−3, depending on the complexity of the image and the SA parameters.

We can try to be more rigorous and keep track of the backward errors ∆b at each
iteration and sum them up (I call this the “step method”), and this does seem to
solve the problem for the case of no SA, and we always have τ = 1, at least I am not
aware of any exceptions.

The condition (37) looks quite different from (33), but we can see that the condi-
tion (37) can be triggered if w′

k becomes small (or rather not very large, as for deep
zooms the right hand side is huge) and/or if wk + xk becomes small. It is unclear
if (37) is ever triggered when (33) is not, with “similar” tolerance.

In actual implementations the absolute values (2 norm of (x, y))in (37) can be
approximated by the infinity norm (max(|x|, |y|)) or 1 norm (|x| + |y|) as they are
not far off from the 2 norm, to avoid taking square roots.

3.4 Glitch resolution

After rendering an image there usually are many glitched points that failed the error
test, and the question is how to proceed. To finish processing the glitched pixels a
difference reference point cr is required. This will generate sub-glitches, so many new
references will have to be generated. There are several options that all work, but
which is the best is unclear at this point. I’ll just list the possiblitities that have been
tried that I am aware of.

1) Use a higher period hyperbolic center as cr. Usually (but not always) higher
period non-escaping reference orbits generate fewer glitches. One option is to run
the period detector beyond the first lowest period and find several more, but this
may not be enough and we probably should have used the highest period for the first
reference anyways. Another option is subdivision of the rendering rectangle and find
new periods and minis in the subregions.

2) Pick a random glitched point and use it as reference. It will generally escape,
but it’s cheap to compute as we already have the orbit to just before the glitch

13

occurred. It’s also possible to select the “worst” glitch, which sounds better, but if it
fails we’re out of luck, whereas with the random method we’ll eventually get lucky.

3) Based on the observation that using the Pauldelbrot glitch detector the glitched
point has a small zn, assume this minimum indicates the presence of a nearby mini,
where this minimum will be exactly zero. So find this mini of period n with one or
more Newton iterations and use that. It is unclear if this always works, it could fail
if the glitched point is outside the basin of attraction for the Newton method.

4 Finding minis

To locate a mini in a region, we find the period first, then use Newton’s method to
find the location, and compute the size using the renormalization formula (19b). To
find the period in a region D we have to find the smallest p such that the image
of D under the map zp(D) contains 0, as then there will be a point c0 in D where
zp(c0) = 0.

A method that works well in practice [18] defines D as a polygon (say triangle,
or rectangle) and approximates its image under z iterations by the polygon formed
by the iterated vertices. Once the deformed polygon surrounds the origin, we have
found a period. You can then stop or continue and usually find several more (higher)
periods. This is a robust method, and applies to more general f(z, c). It can fail
when the vertices escape before a period is detected, and in theory a detected period
could be wrong but in practice this is rare if it ever happens at all. It requires the
computation of at least 3 (for triangle) full precision orbits.

For holomorphic polynomials (in just z) there is a better method which requires
only 1 full precision orbit using “ball arithmetic” [15].

4.1 Ball arithmetic

We consider expressions of the form [z] = z + rE with z a complex number, r a real
number and E a “unit ball”. We can think of E as being parametrized by polar
coordinates 0 ≤ ρ < 1 and 0 ≤ θ < 2π as E = ρeiθ, and [z] represents a region,
parametrized by (ρ, θ). It is z surrounded by a ball (disc) of radius r. Arithmetic of
“ball” expressions [z] obey some funny rules. I’ll introduce (non-standard) notation.
[u] ≃ [v] means both regions are the same. [u] ⊆ [v] means region [u] lies in region [v].
Now for some rules and examples. Balls E with subscript are independent, having

14

their own parameters.

zE ≃ |z|E (38a)

En ≃ E for (n > 0) (38b)

||u| − |v||E ⊆ uE + vE ⊆ (|u|+ |v|)E (38c)

(u+ v)E ≃ |u+ v|E (38d)

1/4E ⊆ (E/2)− (E/2)2 ⊆ 3/4E (38e)

(E1/2)− (E2/2)
2 ≃ 3/4E (38f)

The region defined in (38e) is the M-set main cardioid, and the formula shows it is
contained in a ball of radius 3/4, and a ball of radius 1/4 fits inside it. Usually for
small balls and the M-set function, the upper limits are very close to the actual image
under iteration, until the ball gets large and starts escaping.

Functions f([z]) of ball expressions are defined only for (possibly infinite) polyno-
mials in z.

We find the period in a ball of radius rc around c by computing the iteration

[zk+1] = zk+1 + rk+1E = [zk]
2 + c+ rcE (39)

which gives us zk(c + rcE), and whenever rk > |zk| the ball contains the origin, and
we have found the period. We get

zk+1 + rk+1E = (zk + rkE)2 + c+ rcE ⊆ z2k + c+ (2|zk|rk + r2k + rc)E (40)

giving

zk+1 = z2k + c (41a)

rk+1 = r2k + 2|zk|rk + rc (41b)

r0 = 0 (41c)

if rk+1 > zk+1 period = k + 1. (41d)

The r iteration can be done in FP. This “first order” method works, but a better
method that escapes later (so can detect higher periods) can be constructed using
ball arithmetic augmented with a Taylor expansion.

Introduce a new entity Ê which represents a definite but unknown point in the
unit disc E. We have Ê ⊆ E which states the obvious fact that any point of Ê is in
E. We have

zn(c+ rcÊ) ⊆ zn(c) + z′n(c)rcÊ + rnE ≡ [zn] (42a)

where rn can be thought of as being of second order in rc, which is assumed small.
In manipulating such expressions we keep the phase in all linear expressions in Ê but

15

raising Ê to a power reduces it to E as the phase is now messed up. We get with
these reduction rules

[zn+1] = zn+1 + (2znz
′
n + 1)rcÊ + rn+1E

[zn+1] = (zn + z′nrcÊ + rnE)2 + c+ rcÊ =

z2n + c+ r2c |z′n|2E + r2nE + 2znz
′
nrcÊ + rcÊ + 2rn|zn|E + 2rcrn|z′n|E =

zn+1 + (2znz
′
n + 1)rcÊ + (r2n + 2rn(|zn|+ rc|z′n|) + r2c |z′n|2)E

and by equating first and last equations we get

zn+1 = z2n + c (43a)

z′n+1 = 2znz
′
n + 1 (43b)

rn+1 = r2n + 2rn(|zn|+ rc|z′n|) + r2c |z′n|2 (43c)

r1 = 0 (43d)

and we have to check if zn + (rc|z′n| + rn)E (where we have reduced Ê) contains the
origin, which happens when rn + rc|z′n| > |zn|.

This second order method is more accurate but we have to compute the derivative.
This may not be a waste of time as we usually want to follow up with a Newton search
for the location of the mini, and we get the first iteration (−zn/z′n) for free from this
method.

For all these methods the iteration can be continued after finding the smallest
period, until the ball or polygon escapes. Often this results in finding more (sometimes
dozens) periods in the region.

16

5 Super series approximation

Using renormalization (see Section 1) we can replace p iterations inside a nucleus of
period p with one iteration of the renormalized function (19c) which speeds up the
calculation of the interior points by a factor p.

An extension of this idea using higher order polynomial approximation was pro-
posed in [5] and initial results seem promising. Let’s call this the super series approx-
imation (SSA).

Consider the PT iteration scheme (23) and assume the reference point cr is the
nucleus of a period p mini. So we have Xkp = 0, for k = 0, 1,

Define polynomials fk(w, b) (w is now just a variable, not related to the wk

from (23)) as follows:

f1(w, b) = w(w + x0) + b = w2 + b (44a)

fn+1(w, b) = fn(w, b)(fn(w, b) + 2xn) + b (44b)

and use it to calculate fp(w, b). We have wp = fp(0, b), i.e., one iteration of fp is the
same as p iterations of (23).

The SSA idea is to approximate fp(w, b) with a lower order bivariate polynomial
in w and b of order (K,M):

∑
ij

≡
K∑
i=0

M∑
j=0

(45a)

b̂ ≡ b/bmax (45b)

fp(w, b) =
∑
ij

aij(p)w
ib̂j + rpE (45c)

where rpE (using ball notation, see Section 4.1) represents the truncation error and
bmax is the maximum of |b| in the region of interest. The scaling simplifies formulas
though of course not necessary. Note that fp(0, b) is just the usual SA, skipping p
iterations.

Precompute the coefficients aij, then iterate fp(0, b) until a yet to be determined
bailout. If bailout occurs at super iteration k we have now computed pk normal
iterations and can continue from there with normal PT iterations. This is similar to
regular SA except different regions now skip by different amounts. Perhaps instead
of continuing with normal PT after super bailout there are smarter ways, using SSA
from other nuclei.

In the remainder of this section I will now derive the recursion for the SSA coef-
ficients and the truncation error estimate. Just substitute (45) into (44) and match
powers and ball terms. To simplify notation let’s define aij = 0 for ij “out of range”
(negative of bigger than K or M). Also when iteration number is omitted in a(.),

17

x., and r. it is n by implication in the formulas below. For aij(1) we get the only
non-zero coefficients a20(1) = 1 and a01(1) = bmax and for the recursion we get

fn+1 =
∑
ij

aij(n+ 1)wib̂j + rn+1E = (46a)

(
∑
ij

aijw
ib̂j + rE)(

∑
ij

aijw
ib̂j + 2x+ rE) + bmaxb̂ = (46b)∑

ij,kl

aijaklw
i+kb̂j+l +

∑
mq

(2xamq + bmaxδ0mδ1q)w
mb̂q+

(r2 + 2r(x+
∑
mq

amqw
mb̂q))E = (46c)

∑
mq

(m,q)∑
i,j=0

aijam−i,q−j + 2xamq + bmaxδ0mδ1q

wmb̂q+ (46d)

(r2 + 2r(x+
∑
mq

amqw
mb̂q))E+ (46e)

(2K,2M)∑
m,q=(0,0)

(m > K|q > M)(

(m,q)∑
i,j=0

aijam−i,q−j)w
mb̂q (46f)

Where the last sum is over powers greater than K or M . From (46d) we obtain the
recursion for the coefficients as

amq(n+ 1) =

(m,q)∑
i,j=0

aij(n)am−i,q−j(n) + 2xnamq(n) + bmaxδ0mδ1q (47)

and to obtain the (b and w independent) recursion for rn we have to put upper bounds
on w and b in (46e) and (46f). We have |b̂| ≤ 1 and |w| ≤ wmax(n), where a choice
could be wmax(n) = |xn|+Rs where Rs is the super escape radius for the fp iterations.
If Rs is small perhaps we can just set wmax = 2.

With this we get the recursion for rk as follows:

rn+1 = r2n + 2rn(|xn|+
∑
mq

|amq|wm
max(n))+

(2K,2M)∑
m,q=(0,0)

(m > K|q > M)

(m,q)∑
i,j=0

|aijam−i,q−j|wm
max(n). (48)

However, this does not work because r just diverges quickly as the bound on
|w| is way too loose. Instead we can be less sophisticated and simply estime the error
in fn by the magnitude of the terms with the three next highest powers, so

rn(w, b) = |aK,M+1b̂+ aK+1,Mw + aK+1,M+1wb̂||wK b̂M |. (49)

18

We now compute aij(p) ≡ aij up to order (K + 1,M + 1), using the last three
terms only for error estimation. The next step is the error propagation in iterating
fp =

∑
ij aij(p)w

ib̂j. This will give us an error for every fp iteration at every point b
and could be used as a stopping condition.

u0 = 0 (50)

un+1 = fp(un, b) (51)

with un = wpn. In ball notation we write [un] = un + ρnE which gives

[u0] = 0 (52)

[un+1] = un+1 + ρn+1E = fp(un + ρnE, b) + rp(un + ρnE, b)E. (53)

Defining Bi(b) =
∑M

j=0 aij b̂
j, dropping the n in subscripts and b dependency in Bi,

and writing q1 = aK,M+1 q2 = aK+1,M+1 and q3 = aK+1,M+1 for notation and collecting
terms containing E we get

[un+1] =

K∑
k=0

kBk(u+ ρE)k + |q1b̂M+1(u+ ρE)K + (q2b̂
M + q3b̂

M+1)(u+ ρE)K+1| (54a)

which we could expand with binomial sums but for now let’s just keep the linear
terms in ρ (which should be small). We get

[un+1] = un+1 +
K∑
k=1

|kBku
k−1|ρE + |q1b̂M+1uK + (q2b̂

M + q3b̂
M+1)uK+1|E+(

|Kq1b̂
M+1uK−1|+ (K + 1)(|q2b̂M |+ |q3b̂M+1)uK |)

)
ρE. (54b)

Collecting the E terms gives

ρ0 = 0 (54c)

ρn+1 = |q1b̂M+1uK + (q2b̂
M + q3b̂

M+1)uK+1|+(
K∑
k=1

|kBku
k−1|+ |Kq1b̂

M+1uK−1|+ (K + 1)(|q2b̂M |+ |q3b̂M+1|)|uK |)

)
ρn (54d)

6 Other things

6.1 Finding Misiurewics points

A similar method to find islands using period detection and Newton iteration can be
used to find Misiurewicz points (pp, p) of period p and preperiod pp, but just solving
zpp(c) = zpp+p(c) could find a lower preperiod. This is solved by eliminating those
solutions by division [12].

19

6.2 Atom domains

An atom is a hyperbolic component (approximately in the shape of a cardioid or
circle) and its nucleus is that point c inside where the orbit is periodic with period
p, so zkp(c) = 0 for any k. Outside points near an atom have orbits which look a bit
like the atom orbit, except zp is small instead of zero, z2p a little less small, until the
orbit escapes. These dips in the orbit indicate the influence of nearby atoms (there
can be dips at multiple periods). The smallest dip can be identified and by doing
this you get a picture of the influence regions of the atoms, even if no mini is visible
in the picture. Details and algorithm can be found here [13], including a domain size
estimate requiring the computation of just the nucleus orbit.

A similar idea can be applied to Misiurewicz domains [14].

6.3 Software

Fast zooming with perturbation theory is implemented in Kalles Fractaler, Mandel-
Machine, and UltraFractal, easy to find on the WWW. Code examples can be found
by following links from some of the references, and here [6].

References

[1] http://www.cns.gatech.edu/∼predrag/courses/PHYS-6124-11/
StGoChap17.pdf.

[2] http://www.fractalforums.com/announcements-and-news/
continued-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/

msg91505/#msg91505.

[3] http://www.fractalforums.com/announcements-and-news/
continued-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/

msg95532/#msg95532.

[4] http://www.fractalforums.com/index.php?topic=18908.msg73027#
msg73027.

[5] https://fractalforums.org/fractal-mathematics-and-new-theories/
28/another-possible-way-to-accelerate-mb-set-deep-zooming/277/.

[6] https://en.wikibooks.org/wiki/Fractals.

[7] S. Blanes, F. Casas, and A. Murua. Splitting and composition methods in the
numerical integration of differential equations. https://arxiv.org/pdf/0812.
0377.pdf.

http://www.cns.gatech.edu/~predrag/courses/PHYS-6124-11/StGoChap17.pdf
http://www.cns.gatech.edu/~predrag/courses/PHYS-6124-11/StGoChap17.pdf
http://www.fractalforums.com/announcements-and-news/*continued*-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/msg91505/#msg91505
http://www.fractalforums.com/announcements-and-news/*continued*-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/msg91505/#msg91505
http://www.fractalforums.com/announcements-and-news/*continued*-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/msg91505/#msg91505
http://www.fractalforums.com/announcements-and-news/*continued*-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/msg95532/#msg95532
http://www.fractalforums.com/announcements-and-news/*continued*-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/msg95532/#msg95532
http://www.fractalforums.com/announcements-and-news/*continued*-superfractalthing-arbitrary-precision-mandelbrot-set-rendering-in-ja/msg95532/#msg95532
http://www.fractalforums.com/index.php?topic=18908.msg73027#msg73027
http://www.fractalforums.com/index.php?topic=18908.msg73027#msg73027
https://fractalforums.org/fractal-mathematics-and-new-theories/28/another-possible-way-to-accelerate-mb-set-deep-zooming/277/
https://fractalforums.org/fractal-mathematics-and-new-theories/28/another-possible-way-to-accelerate-mb-set-deep-zooming/277/
https://en.wikibooks.org/wiki/Fractals
https://arxiv.org/pdf/0812.0377.pdf
https://arxiv.org/pdf/0812.0377.pdf

20

[8] Y. Dang, L. H. Kaufmann, and D. Sandin. Hypercomplex iterations, dis-
tance estimation and higher dimensional fractals. https://www.evl.uic.edu/

hypercomplex/html/book/book.pdf.

[9] Claude Heiland-Allen. https://mathr.co.uk/blog/2015-01-26 newtons

method for misiurewicz points.html.

[10] Claude Heiland-Allen. https://mathr.co.uk/blog/2016-12-24 deriving

the size estimate.html.

[11] Claude Heiland-Allen. https://mathr.co.uk/blog/2016-03-06 simpler

series approximation.html.

[12] Claude Heiland-Allen. https://mathr.co.uk/blog/2015-01-26 newtons

method for misiurewicz points.html.

[13] Claude Heiland-Allen. https://mathr.co.uk/blog/2013-12-10 atom domain

size estimation.html.

[14] Claude Heiland-Allen. https://mathr.co.uk/blog/2015-02-01 misiurewicz

domains.html.

[15] J. Van Der Hoeven. Ball arithmetic (hal-00432152v1). https://hal.

archives-ouvertes.fr/hal-00432152v1, 2011.

[16] Philippe Langlois and Nicolas Louvet. Faithful polynomial evaluation with com-
pensated horner algorithm. https://arxiv.org/pdf/cs/0610122.pdf, 2017.

[17] K. I. Martin. Superfractalthing maths. http://superfractalthing.co.nf/

sft maths.pdf.

[18] Robert P. Munafo. http://mrob.com/pub/muency/period.html.

[19] Wikipedia. https://en.wikipedia.org/wiki/Recurrence relation#

Solving first-order non-homogeneous recurrence relations with

variable coefficients.

[20] J.A. Yorke, C. Grebogi, E. Ott, and L. Tedeschini-Lalli. Scaling behavior of
windows in dissipative dynamical systems. Phys.Rev.Lett., (54):1095, 1995.

https://www.evl.uic.edu/hypercomplex/html/book/book.pdf
https://www.evl.uic.edu/hypercomplex/html/book/book.pdf
https://mathr.co.uk/blog/2015-01-26_newtons_method_for_misiurewicz_points.html
https://mathr.co.uk/blog/2015-01-26_newtons_method_for_misiurewicz_points.html
https://mathr.co.uk/blog/2016-12-24_deriving_the_size_estimate.html
https://mathr.co.uk/blog/2016-12-24_deriving_the_size_estimate.html
https://mathr.co.uk/blog/2016-03-06_simpler_series_approximation.html
https://mathr.co.uk/blog/2016-03-06_simpler_series_approximation.html
https://mathr.co.uk/blog/2015-01-26_newtons_method_for_misiurewicz_points.html
https://mathr.co.uk/blog/2015-01-26_newtons_method_for_misiurewicz_points.html
https://mathr.co.uk/blog/2013-12-10_atom_domain_size_estimation.html
https://mathr.co.uk/blog/2013-12-10_atom_domain_size_estimation.html
https://mathr.co.uk/blog/2015-02-01_misiurewicz_domains.html
https://mathr.co.uk/blog/2015-02-01_misiurewicz_domains.html
https://hal.archives-ouvertes.fr/hal-00432152v1
https://hal.archives-ouvertes.fr/hal-00432152v1
https://arxiv.org/pdf/cs/0610122.pdf
http://superfractalthing.co.nf/sft_maths.pdf
http://superfractalthing.co.nf/sft_maths.pdf
http://mrob.com/pub/muency/period.html
https://en.wikipedia.org/wiki/Recurrence_relation#Solving_first-order_non-homogeneous_recurrence_relations_with_variable_coefficients
https://en.wikipedia.org/wiki/Recurrence_relation#Solving_first-order_non-homogeneous_recurrence_relations_with_variable_coefficients
https://en.wikipedia.org/wiki/Recurrence_relation#Solving_first-order_non-homogeneous_recurrence_relations_with_variable_coefficients

	Basics
	Complex differentiation
	Rendering methods
	Perturbation theory
	Series approximation
	Theoretical SA error analysis
	Practical SA error analysis
	SA error analysis in practice

	Glitch detection
	Glitch resolution

	Finding minis
	Ball arithmetic

	Super series approximation
	Other things
	Finding Misiurewics points
	Atom domains
	Software

